<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
TIAN Jing-lei, HOU Huan-yu, GUO Ze-feng, CHEN Jing, XING Yi, SU Wei. Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst[J]. Chinese Journal of Engineering, 2023, 45(3): 499-508. doi: 10.13374/j.issn2095-9389.2021.12.16.006
Citation: TIAN Jing-lei, HOU Huan-yu, GUO Ze-feng, CHEN Jing, XING Yi, SU Wei. Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst[J]. Chinese Journal of Engineering, 2023, 45(3): 499-508. doi: 10.13374/j.issn2095-9389.2021.12.16.006

Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst

doi: 10.13374/j.issn2095-9389.2021.12.16.006
More Information
  • Corresponding author: E-mail: suwei@ustb.edu.cn
  • Received Date: 2021-12-16
    Available Online: 2022-03-28
  • Publish Date: 2023-03-01
  • The most commonly used method for industrial flue gas denitrification is selective catalytic reduction (SCR). However, the catalyst preparation is complex and expensive. The iron and steel industry produces large amounts of waste containing metal oxides that can be used as active catalytic components for SCR of nitrogen oxides. In this study, a novel catalyst for SCR of nitrogen oxides was prepared by roasting, sulfuric acid, and sulfuric acid-roasting modification of steelmaking sludge, which is used as the raw material. The physical and chemical properties of the catalysts from steelmaking sludge before and after modification were analyzed using Brunauer-Emmett-Teller analysis, scanning electron microscopy, X-ray diffraction, X-ray fluorescence, and temperature-programmed desorption of ammonia. It has been revealed that Fe, Mn, V, and Ti are the main active groups of the catalyst. Calcination can transform Fe3O4 to α-Fe2O3 with better denitrification activity, thus improving the catalyst reactivity. A high calcination temperature can cause a collapse of the pore structure of the catalyst, thereby decreasing the surface area and active sites and ultimately reducing the catalytic activity. The catalyst modified at the optimum calcination temperature of 400 °C has the highest catalytic activity at 350 °C and a denitrification efficiency of 57.6%. The sulfuric acid-modified catalyst has excellent catalytic activity. Sulfuric acid impregnation changes the surface morphology of the catalyst, reduces the grain size, generates numerous sulfate species, provides more acidic sites on the catalyst surface, and promotes catalyst performance. The 9 mol·L?1 sulfuric acid-modified catalyst has the highest denitrification efficiency at 300 °C. Compared with the unmodified catalyst, the denitrification efficiency significantly increased from 22.9% to 88.5%. Conversely, a denitrification efficiency of 72.9% is measured for the catalyst modified by sulfuric acid and roasting modification, which is lower than that of the sulfuric acid-modified catalyst at 300 °C. This may be explained by the fact that sulfuric acid and roasting modification causes not only structural changes in the catalyst but also the decomposition of the generated sulfate species, thereby leading to catalytic efficiency reduction. This work shows a feasible preparation of a low-cost SCR catalyst for denitrification by roasting and acid modification using steelmaking sludge as the raw material, provides a theoretical basis for developing low-cost denitrification catalysts using metallurgical solid wastes and promotes clean production in the metallurgical industry.

     

  • loading
  • [1]
    李國亮. 氮氧化物對環境的危害及污染控制技術. 山西化工, 2019, 39(5):123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44

    Li G L. Hazards of nitrogen oxides to the environment and pollution control technology. Shanxi Chem Ind, 2019, 39(5): 123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44
    [2]
    Chen G B, Wan X, Yang G H, et al. Traffic-related air pollution and lung cancer: A meta-analysis. Thorac Cancer, 2015, 6(3): 307
    [3]
    Goldstein E, Peek N F, Parks N J, et al. Fate and distribution of inhaled nitrogen dioxide in rhesus monkeys. Am Rev Respir Dis, 1977, 115(3): 403
    [4]
    Lai J K, Wachs I. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts. ACS Catal, 2018, 8(7): 6537 doi: 10.1021/acscatal.8b01357
    [5]
    Wang C, Qin R Y, Zhang X F, et al. Safe disposal of deactivated commercial selective catalytic reduction catalyst (V2O5–MoO3/TiO2) as a low-cost and regenerable sorbent to recover gaseous elemental mercury in smelting flue gas. J Hazard Mater, 2021, 406: 124744
    [6]
    Zhang Q J, Wu Y F, Yuan H R. Recycling strategies of spent V2O5–WO3/TiO2 catalyst: A review. Resour Conserv Recycl, 2020, 161: 104983
    [7]
    Husnain N, Li K, Anwar M, et al. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3. Rev Chem Eng, 2018, 35(2): 239
    [8]
    張洪亮, 龍紅明, 李家新, 等. 鐵基催化劑用于氨選擇性催化還原氮氧化物研究進展. 無機化學學報, 2019, 35(5):753 doi: 10.11862/CJIC.2019.099

    Zhang H L, Long H M, Li J X, et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3. Chin J Inorg Chem, 2019, 35(5): 753 doi: 10.11862/CJIC.2019.099
    [9]
    Zhang J, Li X C, Chen P G, et al. Research status and prospect on vanadium-based catalysts for NH3-SCR denitration. Materials (Basel), 2018, 11(9): 1632 doi: 10.3390/ma11091632
    [10]
    Liu Z M, Su H, Chen B H, et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem Eng J, 2016, 299: 255 doi: 10.1016/j.cej.2016.04.100
    [11]
    Gong Z G, Niu S, Zhang Y J, et al. Facile synthesis of porous α-Fe2O3 nanostructures from MIL-100(Fe) via sacrificial templating method, as efficient catalysts for NH3-SCR reaction. Mater Res Bull, 2020, 123: 110693 doi: 10.1016/j.materresbull.2019.110693
    [12]
    Ciambelli P, Fortuna M E, Sannino D, et al. The influence of sulphate on the catalytic properties of V2O5–TiO2 and WO3–TiO2 in the reduction of nitric oxide with ammonia. Catal Today, 1996, 29(1-4): 161
    [13]
    陳旺生, 張成剛, 胡發立, 等. 硫酸改性燒結礦催化劑脫硝性能研究. 燒結球團, 2019, 44(5):65 doi: 10.13403/j.sjqt.2019.05.079

    Chen W S, Zhang C G, Hu F L, et al. Study on denitrification performance of sinter catalyst modified by sulphate. Sinter Pelletizing, 2019, 44(5): 65 doi: 10.13403/j.sjqt.2019.05.079
    [14]
    Lian Z H, Shan W P, Wang M, et al. The balance of acidity and redox capability over modified CeO2 catalyst for the selective catalytic reduction of NO with NH3. J Environ Sci, 2019, 79: 273
    [15]
    Ye D, Wang X X, Liu H, et al. Insights into the effects of sulfate species on CuO/TiO2 catalysts for NH3-SCR reactions. Mol Catal, 2020, 496: 111191 doi: 10.1016/j.mcat.2020.111191
    [16]
    Zhao Q S, Xiang J, Sun L S, et al. Adsorption and oxidation of NH3 and NO over sol-gel-derived CuO?CeO2?MnOx/γ-Al2O3 Catalysts. Energy &Fuels, 2009, 23(3): 1539
    [17]
    Chang H Z, Chen X Y, Li J H, et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx–CeO2 catalysts for NH3-SCR at low temperatures. Environ Sci &Technol, 2013, 47(10): 5294
    [18]
    Giuliana M, Giuseppina C, Claudio M, et al. Structural and surface characterization of pure and sulfated iron oxides. Chem Mater, 2003, 15(3): 675
    [19]
    趙莉, 韓健, 吳洋文, 等. 釩鈦基SCR脫硝催化劑堿土金屬中毒. 化工進展, 2019, 38(3):1419 doi: 10.16085/j.issn.1000-6613.2018-0676

    Zhao L, Han J, Wu Y W, et al. Study on alkaline earth metal poisoning of vanadium-titanium based SCR denitration catalyst. Chem Ind Eng Prog, 2019, 38(3): 1419 doi: 10.16085/j.issn.1000-6613.2018-0676
    [20]
    Benson S A, Laumb J D, Crocker C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals. Fuel Process Technol, 2005, 86(5): 577
    [21]
    Xing Y, Zhang H, Su W, et al. Mineral-derived catalysts optimized for selective catalytic reduction of NOx with NH3. J Clean Prod, 2020, 289(1): 125756
    [22]
    Jiang S Y, Zhou R X. Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3. Fuel Process Technol, 2015, 133: 220 doi: 10.1016/j.fuproc.2015.02.004
    [23]
    Zhang J, Huang Z W, Du Y Y, et al. Identification of active sites over Fe2O3-based architecture: The promotion effect of H2SO4 erosion synthetic protocol. ACS Appl Energy Mater, 2018, 1(6): 2385 doi: 10.1021/acsaem.8b00353
    [24]
    陳鑫, 歸柯庭, 顧少宸. 改性菱鐵礦催化劑的催化脫硝活性及抗硫性研究. 燃料化學學報, 2019, 47(3):370 doi: 10.3969/j.issn.0253-2409.2019.03.016

    Chen X, Gui K T, Gu S C. Catalytic denitration activity and sulfur resistance of modified siderite catalysts. J Fuel Chem Technol, 2019, 47(3): 370 doi: 10.3969/j.issn.0253-2409.2019.03.016
    [25]
    Du H, Han Z T, Wang Q M, et al. Effects of ferric and Manganese precursors on catalytic activity of Fe–Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environ Sci Pollut Res Int, 2020, 27(32): 40870 doi: 10.1007/s11356-020-10073-y
    [26]
    Xu T F, Wu X D, Liu X S, et al. Effect of Barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction. J Environ Sci, 2017, 57: 110
    [27]
    Liu F D, Shan W P, Lian Z H, et al. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl Catal B Environ, 2018, 230: 165 doi: 10.1016/j.apcatb.2018.02.052
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (384) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频