Citation: | NA Qing, WANG Yong. Research on the mathematical relationship between mud height and underflow concentration of deep cone thickener based on effective stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1126-1133. doi: 10.13374/j.issn2095-9389.2021.12.16.005 |
[1] |
王勇, 吳愛祥, 王洪江, 等. 全尾膏體動態壓密特性及其數學模型. 巖土力學, 2014, 35(增刊2): 168
Wang Y, Wu A X, Wang H J, et al. Dynamic thickening characteristics and mathematical model of total tailings. Rock Soil Mech, 2014, 35(Suppl 2): 168
|
[2] |
Cihangir F, Ercikdi B, Kesimal A, et al. Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Miner Eng, 2015, 83: 117 doi: 10.1016/j.mineng.2015.08.022
|
[3] |
Yilmaz E, Benzaazoua M, Bussière B, et al. Influence of disposal configurations on hydrogeological behaviour of sulphidic paste tailings: A field experimental study. Int J Miner Process, 2014, 131: 12 doi: 10.1016/j.minpro.2014.08.004
|
[4] |
陳華君, 劉全軍. 金屬礦山固體廢物危害及資源化處理. 金屬礦山, 2009(4):154 doi: 10.3321/j.issn:1001-1250.2009.04.043
Chen H J, Liu Q J. Harms and resource-like treatment of the solid wastes from metal mines. Met Mine, 2009(4): 154 doi: 10.3321/j.issn:1001-1250.2009.04.043
|
[5] |
王洪江, 彭青松, 楊瑩, 等. 金屬礦尾砂濃密技術研究現狀與展望. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2021.01.11.001
Wang H J, Peng Q S. Yang Y, et al. Research status and prospect of thickening technology for metal tailings. Chinese J Chin Eng,https://doi.org/10.13374/j.issn2095-9389.2021.01.11.001
|
[6] |
Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
|
[7] |
劉曉輝, 吳愛祥, 王洪江, 等. 膏體充填尾礦濃密規律初探. 金屬礦山, 2009(9):38 doi: 10.3321/j.issn:1001-1250.2009.09.007
Liu X H, Wu A X, Wang H J, et al. A primary discussion on the thickening law of paste-filling. Met Mine, 2009(9): 38 doi: 10.3321/j.issn:1001-1250.2009.09.007
|
[8] |
谷志君. 最大型深錐膏體濃密機在中國銅鉬礦山的應用. 黃金, 2010, 31(11):43 doi: 10.3969/j.issn.1001-1277.2010.11.012
Gu Z J. Application of the biggest deep cone paste thickener in domestic copper-molybdenum mine. Gold, 2010, 31(11): 43 doi: 10.3969/j.issn.1001-1277.2010.11.012
|
[9] |
Farrow J B, Johnston R R M, Simic K, et al. Consolidation and aggregate densification during gravity thickening. Chem Eng J, 2000, 80(1-3): 141 doi: 10.1016/S1383-5866(00)00083-6
|
[10] |
周旭, 金曉剛, 劉培正, 等. 基于動態濃密試驗的深錐濃密機底流濃度預測模型. 金屬礦山, 2017(12):39 doi: 10.3969/j.issn.1001-1250.2017.12.008
Zhou X, Jin X G, Liu P Z, et al. Prediction model for underflow concentration of deep cone thickener based on dynamic thickening experimentation. Met Mine, 2017(12): 39 doi: 10.3969/j.issn.1001-1250.2017.12.008
|
[11] |
Wang H, Liu T, Cao Y N, et al. Underflow concentration prediction model of deep-cone thickener based on data-driven. J China Univ Posts Telecommun, 2019, 26(6): 63
|
[12] |
Fang C Y, He D K, Li K, et al. Image-based thickener mud layer height prediction with attention mechanism-based CNN. ISA Trans,https://doi.org/10.1016/j.isatra.2021.11.004
|
[13] |
王勇, 王洪江, 吳愛祥. 基于高徑比的深錐濃密機底流濃度數學模型. 武漢理工大學學報, 2011, 33(8):113 doi: 10.3963/j.issn.1671-4431.2011.08.025
Wang Y, Wang H J, Wu A X. Mathematical model of deep cone thickener underflow concentration based on the height to diameter ratio. J Wuhan Univ Technol, 2011, 33(8): 113 doi: 10.3963/j.issn.1671-4431.2011.08.025
|
[14] |
吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152
Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152
|
[15] |
王新民, 張國慶, 趙建文, 等. 深錐濃密機底流濃度預測與外部結構參數優化. 重慶大學學報, 2015, 38(6):1 doi: 10.11835/j.issn.1000-582X.2015.06.001
Wang X M, Zhang G Q, Zhao J W, et al. Underflow concentration prediction and external structure parameter optimization of deep cone thickener. J Chongqing Univ, 2015, 38(6): 1 doi: 10.11835/j.issn.1000-582X.2015.06.001
|
[16] |
Du J H, Mcloughlin R, Smart R S C. Improving thickener bed density by ultrasonic treatment. Int J Miner Process, 2014, 133: 91 doi: 10.1016/j.minpro.2014.10.003
|
[17] |
Jiao H Z, Wu Y C, Wang H, et al. Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener. Miner Eng, 2021, 173: 107043 doi: 10.1016/j.mineng.2021.107043
|
[18] |
Hunter T N, Usher S P, Biggs S, et al. Characterization of bed densification in a laboratory scale thickener, by novel application of an acoustic backscatter system. Procedia Eng, 2015, 102: 858 doi: 10.1016/j.proeng.2015.01.206
|
[19] |
邵龍潭, 郭曉霞, 鄭國鋒. 粒間應力、土骨架應力和有效應力. 巖土工程學報, 2015, 37(8):1478 doi: 10.11779/CJGE201508017
Shao L T, Guo X X, Zheng G F. Intergranular stress, soil skeleton stress and effective stress. Chin J Geotech Eng, 2015, 37(8): 1478 doi: 10.11779/CJGE201508017
|
[20] |
李廣信. 論土骨架與滲透力. 巖土工程學報, 2016, 38(8):1522 doi: 10.11779/CJGE201608021
Li G X. On soil skeleton and seepage force. Chin J Geotech Eng, 2016, 38(8): 1522 doi: 10.11779/CJGE201608021
|
[21] |
路德春, 杜修力, 許成順. 有效應力原理解析. 巖土工程學報, 2013, 35(增刊1): 146
Lu D C, Du X L, Xu C S. Analytical solutions to principle of effective stress. Chin J Geotech Eng, 2013, 35(Suppl 1): 146
|
[22] |
楊晶. 黃土狀壓實填土壓縮和強度特性研究[學位論文] 太原: 太原理工大學, 2014
Yang J. Study on Compression and Strength Properties of Compacted Loess-Like Backfill [Dissertation]. Taiyuan: Taiyuan University of Technology, 2014
|
[23] |
湛含輝, 楊小生, 蔡明華. 濃密機中壓縮過程及其有關計算. 金屬礦山, 1989(11):45
Zhan H H, Yang X S, Cai M H. Compression process and related calculation in thickener. Met Mine, 1989(11): 45
|
[24] |
方永倫, 任建偉, 李亞平, 等. 開封地區土的壓縮系數和孔隙比的經驗關系. 黃河水利職業技術學院學報, 2004, 16(1):43 doi: 10.3969/j.issn.1008-486X.2004.01.016
Fang Y L, Ren J W, Li Y P, et al. Empirical relationship between compression coefficient and pore ratio of soil in Kaifeng area. J Yellow River Cnserv Tech Inst, 2004, 16(1): 43 doi: 10.3969/j.issn.1008-486X.2004.01.016
|
[25] |
王洪江, 王勇, 吳愛祥等. 細粒全尾動態壓密與靜態壓密機理. 北京科技大學學報, 2013, 35(5):566
Wang H J, Wang Y, Wu A X, et al. Dynamic compaction and static compaction mechanism of fine unclassified tailings. J Univ Sci Technol Beijing, 2013, 35(5): 566
|