<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LIU Tong-jie, SONG Hong-qing, ZHANG Jie, LUO Xiao-tian, PENG Ru-yi, ZHANG Xian-guo. Application of the fuzzy analytic hierarchy process in deep space exploration program optimization in China[J]. Chinese Journal of Engineering, 2022, 44(8): 1433-1443. doi: 10.13374/j.issn2095-9389.2021.12.06.008
Citation: LIU Tong-jie, SONG Hong-qing, ZHANG Jie, LUO Xiao-tian, PENG Ru-yi, ZHANG Xian-guo. Application of the fuzzy analytic hierarchy process in deep space exploration program optimization in China[J]. Chinese Journal of Engineering, 2022, 44(8): 1433-1443. doi: 10.13374/j.issn2095-9389.2021.12.06.008

Application of the fuzzy analytic hierarchy process in deep space exploration program optimization in China

doi: 10.13374/j.issn2095-9389.2021.12.06.008
More Information
  • Corresponding author: E-mail: songhongqing@ustb.edu.cn
  • Received Date: 2021-12-06
    Available Online: 2022-04-02
  • Publish Date: 2022-07-06
  • China’s deep space exploration program is a complex and systematic project involving many fields and having great technical difficulties and funding requirements. The current program optimization method was developed in response to the demonstration group’s demonstration and the expert evaluation of the intermediary agency. This method requires a long demonstration period and makes rapid scientific decisions difficult. The Analytic Hierarchy Process (AHP) and the Fuzzy Analytic Hierarchy Process (FAHP) are both practical multi-factor and multi-objective decision-making methods that are widely used in many fields. To solve the problem of AHP being difficult to verify and judge for consistency, the concept of a fuzzy, consistent matrix was introduced, followed by the establishment of the FAHP. The introduction of the FAHP into the optimization of the overall scheme for deep space exploration benefits both the selection of the optimal overall scheme at the national level, which enables all relevant parties to reach consensus as soon as possible, and the national scientific decision-making process. This study established a systematic index evaluation model based on the FAHP model, considering the multi-index and multi-level structure of technology, science, and funding, among other things. By combining expert judgment and theoretical analysis, a judgment matrix of indicators at various levels was established and weight coefficients were derived for the Chang’e-4 mission plan in China’s lunar exploration project. Then, the overall plan was evaluated for optimal applicability. The results show that the three factors of technology, science, and funding are more important than time and benefit. Advancement and reliability are the primary control factors under the technical criteria. Scientific value is the major controlling factor when it comes to scientific criteria. The development cost is the primary constraint on the funding criterion. Planning compliance and planning feasibility are the primary controlling factors under the cycle criterion. Scientific output and technological promotion are the major controlling factors under the criterion of benefit. Among the four alternatives, the one in which the relay satellite is launched by the Long March 4C and the lander and rover are launched by the Long March 3B has the largest sorting weight. As a result, this solution is the optimal solution that is also consistent with the current situation. This research can help China provide rapid and scientifically sound support for various deep space exploration programs.

     

  • loading
  • [1]
    Song H Q, Zhang J, Ni D D, et al. Investigation on in situ water ice recovery considering energy efficiency at the lunar south pole. Appl Energy, 2021, 298: 117136 doi: 10.1016/j.apenergy.2021.117136
    [2]
    Song H Q, Zhang J, Sun Y Q, et al. Theoretical study on thermal release of helium-3 in lunar ilmenite. Minerals, 2021, 11(3): 319 doi: 10.3390/min11030319
    [3]
    陳東萍. 日本深空探測器與運載器發展歷程及啟示[學位論文]. 哈爾濱: 哈爾濱工業大學, 2017

    Chen D P. The Development History and Inspiration of Japanese Deep-Space Detector and Carrier [Dissertation]. Harbin: Harbin Institute of Technology, 2017
    [4]
    宋洪慶, 杜恒暢, 張杰, 等. 月球氦-3資源的原位開采熱釋放行為研究. 空間科學學報, 2021, 41(5):787 doi: 10.11728/cjss2021.05.787

    Song H Q, Du H C, Zhang J, et al. Release behavior research of in situ helium-3 resources extraction in moon under heating. Chin J Space Sci, 2021, 41(5): 787 doi: 10.11728/cjss2021.05.787
    [5]
    葉培建, 鄒樂洋, 王大軼, 等. 中國深空探測領域發展及展望. 國際太空, 2018(10):4 doi: 10.3969/j.issn.1009-2366.2018.10.002

    Ye P J, Zou L Y, Wang D Y, et al. Development and prospect of Chinese deep space exploration. Space Int, 2018(10): 4 doi: 10.3969/j.issn.1009-2366.2018.10.002
    [6]
    Li C L, Wang C, Wei Y, et al. China's present and future lunar exploration program. Science, 2019, 365(6450): 238 doi: 10.1126/science.aax9908
    [7]
    Lunine J. The impact of solar system exploration on our understanding of exoplanetary systems // American Astronomical Society Meeting Abstracts# 235. Honolulu, 2020, 235: 356.03
    [8]
    Wu J. Introduction to Space Science. Singapore: Springer, 2021
    [9]
    邱家穩, 王強, 馬繼楠. 深空探測技術(特約). 紅外與激光工程, 2020, 49(5):9

    Qiu J W, Wang Q, Ma J N. Deep space exploration technology(Invited). Infrared Laser Eng, 2020, 49(5): 9
    [10]
    Zhou C Y, Jia Y Z, Liu J Z, et al. Scientific objectives and payloads of the lunar sample return mission—Chang’E-5. Adv Space Res, 2022, 69(1): 823 doi: 10.1016/j.asr.2021.09.001
    [11]
    車浪, 王彬, 趙鵬飛, 等. 月壤原位利用技術研究進展. 工程科學學報, 2021, 43(11):1433

    Che L, Wang B, Zhao P F, et al. Research progress in the in situ utilization of lunar soil. Chin J Eng, 2021, 43(11): 1433
    [12]
    歐陽自遠, 李春來, 鄒永廖, 等. 繞月探測工程的初步科學成果. 中國科學:地球科學, 2010, 40(3):261 doi: 10.1360/zd2010-40-3-261

    Ouyang Z Y, Li C L, Zou Y L, et al. The primary science result from the Chang’E-1 probe. Sci Sin (Terrae), 2010, 40(3): 261 doi: 10.1360/zd2010-40-3-261
    [13]
    葉培建, 黃江川, 孫澤洲, 等. 中國月球探測器發展歷程和經驗初探. 中國科學:技術科學, 2014, 44(6):543 doi: 10.1360/N092014-00150

    Ye P J, Huang J C, Sun Z Z, et al. The process and experience in the development of Chinese lunar probe. Sci Sin (Technol), 2014, 44(6): 543 doi: 10.1360/N092014-00150
    [14]
    葉培建, 黃江川, 張廷新, 等. 嫦娥二號衛星技術成就與中國深空探測展望. 中國科學:技術科學, 2013, 43(5):467 doi: 10.1360/092013-229

    Ye P J, Huang J C, Zhang T X, et al. Technological achievements of Chang 'E-2 satellite and prospects of China's deep space exploration. Sci Sin (Technol), 2013, 43(5): 467 doi: 10.1360/092013-229
    [15]
    孫澤洲, 張廷新, 張熇, 等. 嫦娥三號探測器的技術設計與成就. 中國科學:技術科學, 2014, 44(4):331 doi: 10.1360/092014-37

    Sun Z Z, Zhang T X, Zhang H, et al. The technical design and achievements of Chang'E-3 probe. Sci Sin (Technol), 2014, 44(4): 331 doi: 10.1360/092014-37
    [16]
    吳偉仁, 于登云. “嫦娥3號”月球軟著陸工程中的關鍵技術. 深空探測學報, 2014, 1(2):105

    Wu W R, Yu D Y. Key technologies in the Chang'e-3 soft-landing project. J Deep Space Explor, 2014, 1(2): 105
    [17]
    吳偉仁, 王瓊, 唐玉華, 等. “嫦娥4號”月球背面軟著陸任務設計. 深空探測學報, 2017, 4(2):111

    Wu W R, Wang Q, Tang Y H, et al. Design of Chang'e-4 lunar farside soft-landing mission. J Deep Space Explor, 2017, 4(2): 111
    [18]
    葉培建, 孫澤洲, 張熇, 等. 嫦娥四號探測器系統任務設計. 中國科學:技術科學, 2019, 49(2):124 doi: 10.1360/N092018-00400

    Ye P J, Sun Z Z, Zhang H, et al. Mission design of Chang'e-4 probe system. Sci Sin (Technol), 2019, 49(2): 124 doi: 10.1360/N092018-00400
    [19]
    Li Q L, Zhou Q, Liu Y, et al. Two-billion-year-old volcanism on the moon from Chang’e-5 basalts. Nature, 2021, 600(7887): 54 doi: 10.1038/s41586-021-04100-2
    [20]
    王港, 帥通, 陳金勇, 等. 基于深度強化學習的航天信息綜合應用與決策研究. 無線電工程, 2019, 49(7):564 doi: 10.3969/j.issn.1003-3106.2019.07.003

    Wang G, Shuai T, Chen J Y, et al. Research on comprehensive application and decision of aerospace information based on deep reinforcement learning. Radio Eng, 2019, 49(7): 564 doi: 10.3969/j.issn.1003-3106.2019.07.003
    [21]
    丁若, 楊然, 楊鵬, 等. 航天工程方案決策中的改進專家權重調整算法及應用. 系統科學與數學, 2016, 36(12):2234 doi: 10.12341/jssms13003

    Ding R, Yang R, Yang P, et al. The application of improved adjusting weights algorithm in space engineering project decision. J Syst Sci Math Sci, 2016, 36(12): 2234 doi: 10.12341/jssms13003
    [22]
    張吉軍. 模糊層次分析法(FAHP). 模糊系統與數學, 2000, 14(2):80 doi: 10.3969/j.issn.1001-7402.2000.02.016

    Zhang J J. Fuzzy analytical hierarchy process. Fuzzy Syst Math, 2000, 14(2): 80 doi: 10.3969/j.issn.1001-7402.2000.02.016
    [23]
    朱毅麟. 用層次分析法實現航天發展目標決策. 中國空間科學技術, 1989, 9(2):38

    Zhu Y L. Decision making of space development objective by using analytic hierarchy process. Chin Space Sci Technol, 1989, 9(2): 38
    [24]
    Higgins M, Benaroya H. Utilizing the analytical hierarchy process to determine the optimal lunar habitat configuration. Acta Astronaut, 2020, 173: 145 doi: 10.1016/j.actaastro.2020.04.012
    [25]
    顏兆林, 周經倫, 龔時雨. 模糊優選技術在航天安全風險管理和決策中的應用. 系統工程理論方法應用, 2000, 9(2):131

    Yan Z L, Zhou J L, Gong S Y. Use of theory of fuzzy selection in the safety risk management and decision-making of the space system. Syst Enging Theory Methodol Appl, 2000, 9(2): 131
    [26]
    歐士揚, 秦大國, 張楊. 基于模糊層次分析法的航天測控方案優選決策. 現代防御技術, 2012, 40(3):161 doi: 10.3969/j.issn.1009-086x.2012.03.032

    Ou S Y, Qin D G, Zhang Y. Optimum decision making of satellite tracking and control schemes based on FAHP. Mod Def Technol, 2012, 40(3): 161 doi: 10.3969/j.issn.1009-086x.2012.03.032
    [27]
    周前祥. 多目標模糊決策模型及其在載人航天中應用的探討. 中國空間科學技術, 1998, 18(1):66

    Zhou Q X. The discussion of multiobject fuzzy decision model and its application in manned spaceflight. Chin Space Sci Technol, 1998, 18(1): 66
    [28]
    楊新慶, 張善從. 基于模糊層次分析法—粒子群算法的載人航天工程項目重要工序識別研究. 科技管理研究, 2019, 39(24):217 doi: 10.3969/j.issn.1000-7695.2019.24.029

    Yang X Q, Zhang S C. Manned space engineering project based on fuzzy analytic hierarchy process-particle swarm optimization research on identification of important processes. Sci Technol Manag Res, 2019, 39(24): 217 doi: 10.3969/j.issn.1000-7695.2019.24.029
    [29]
    Saaty T L. The Analytic Hierarchy Process. New York: McGraw Hill, 1980
    [30]
    Vaidya O S, Kumar S. Analytic hierarchy process: An overview of applications. Eur J Oper Res, 2006, 169(1): 1 doi: 10.1016/j.ejor.2004.04.028
    [31]
    Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9(3): 293 doi: 10.1023/A:1018628609742
    [32]
    周艷美, 李偉華. 改進模糊層次分析法及其對任務方案的評價. 計算機工程與應用, 2008, 44(5):212

    Zhou Y M, Li W H. Enhanced FAHP and its application to task scheme evaluation. Comput Eng Appl, 2008, 44(5): 212
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article views (614) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频