<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
LIU Wen-jing, ZHANG Hai-yang, GAO Bo, ZHENG Jia-xi, HAN Dong-xu, LUO Er-cang, PITRE Laurent. In situ evaluation of the linear thermal expansion coefficient of Cu-ETP from 4.3 K to 299 K[J]. Chinese Journal of Engineering, 2023, 45(3): 419-430. doi: 10.13374/j.issn2095-9389.2021.12.03.010
Citation: LIU Wen-jing, ZHANG Hai-yang, GAO Bo, ZHENG Jia-xi, HAN Dong-xu, LUO Er-cang, PITRE Laurent. In situ evaluation of the linear thermal expansion coefficient of Cu-ETP from 4.3 K to 299 K[J]. Chinese Journal of Engineering, 2023, 45(3): 419-430. doi: 10.13374/j.issn2095-9389.2021.12.03.010

In situ evaluation of the linear thermal expansion coefficient of Cu-ETP from 4.3 K to 299 K

doi: 10.13374/j.issn2095-9389.2021.12.03.010
More Information
  • In this study, the linear thermal expansion coefficient of electrolytic through pitch copper (Cu-ETP) was used as a resonator material in the single-pressure refractive-index gas thermometer and was evaluated in situ at high precision via the multi-mode microwave resonance method in the temperature range of 4.3 to 299 K. Two experimental measurement schemes, cooling method (5–299 K) and temperature control method (4.3–26 K), are employed for different temperature ranges. These methods adopt the same calculation method, wherein the relation between the length and temperature is obtained first, and then the polynomial fitting is used to obtain the linear thermal expansion coefficient of the resonator. The resonator installed in the cryostat has a quasi–spherical shape, with similar radii in the x, y, and z axes; for example, if the radius in one direction is R, then the radii in the other two directions are 1.001R and 1.0005R. The accurate radius of the quasi–sphere in low temperature can be measured by the multi-mode microwave resonance method, which is a mature method with a significant non-ideal correction to reduce the difference between the actual and ideal environments. For the cooling method, to reduce the impact of random errors, we collect five microwave modes (TM11, TE11, TM12, TE12, and TE13) and repeat four experiment runs (Run9, Run10, Run12, and Run17), assuming the average value as the final result. The max radius deviation during the different modes is 0.37 μm, indicating that the result has a good mode consistency. Then, the measurement uncertainty of the radius is analyzed, with all values within 0.27 μm and the mode consistency being the main influencing item. The linear thermal expansion coefficient can be calculated by the polynomial fitting method with the standard uncertainty of 2.2×10?7 K?1, with repeatability being the main source of uncertainty. As for the controlling method, the same analyzing procedure is implemented, the max deviation of the radius during the four modes (TM11, TE11, TM12, and TE13) is 0.12 μm, and the deviation of different runs from the average value is within 0.0056 μm, smaller than the radius uncertainty, which has good repeatability. The standard uncertainty of radius is within 0.12 μm in the entire range and the non-ideal correction and frequency stability are the two main influencing factors. The standard uncertainty of the linear thermal expansion is 2.9×10?9 K?1, and the two main sources are the microwave mode consistency and repeatability. Due to the higher stability of temperature control and lower microwave measurement noise, the results determined by the temperature control method are more accurate. Finally, equations for the linear thermal expansion coefficient of Cu-ETP are further developed to realize a high-precision correlation between the experimental data and temperature.

     

  • loading
  • [1]
    Phillips W D. The end of artefacts. Nat Phys, 2019, 15(5): 518
    [2]
    Consultative Committee for Time and Frequency. Mise en pratique for the definition of the second in the SI [Z/OL]. Sciencepaper Online (2019-05-20) [2021-12-03].https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-second.pdf
    [3]
    Gaiser C, Fellmuth B, Haft N. Primary thermometry from 2.5 K to 140 K applying dielectric-constant gas thermometry. Metrologia, 2017, 54(1): 141 doi: 10.1088/1681-7575/aa5389
    [4]
    Pitre L, Sparasci F, Risegari L, et al. New measurement of the Boltzmann constantkby acoustic thermometry of helium-4 gas. Metrologia, 2017, 54(6): 856 doi: 10.1088/1681-7575/aa7bf5
    [5]
    Rourke P M C, Gaiser C, Gao B, et al. Refractive-index gas thermometry. Metrologia, 2019, 56(3): 032001 doi: 10.1088/1681-7575/ab0dbe
    [6]
    Gao B, Pitre L, Luo E C, et al. Feasibility of primary thermometry using refractive index measurements at a single pressure. Measurement, 2017, 103: 258 doi: 10.1016/j.measurement.2017.02.039
    [7]
    Simon N J, Drexler E S, Reed R P. Properties of copper and copper alloys at cryogenic temperatures [R/OL]. Sciencepaper Online (1992-02-01) [2021-12-03].https://www.osti.gov/servlets/purl/5340308
    [8]
    郭永良. 渦流陣列檢測鋁薄板的CIVA仿真與試驗研究[學位論文]. 南昌: 南昌航空大學, 2014

    Guo Y L. CIVA Simulation and Experimental Study of Eddy Current Array Detection Aluminum Sheet [Dissertation]. Nanchang: Nanchang Hangkong University, 2014
    [9]
    Mehl J B, Moldover M R, Pitre L. Designing quasi-spherical resonators for acoustic thermometry. Metrologia, 2004, 41(4): 295 doi: 10.1088/0026-1394/41/4/011
    [10]
    Madonna Ripa D, Imbraguglio D, Gaiser C, et al. Refractive index gas thermometry between 13.8 K and 161.4 K. Metrologia, 2021, 58(2): 025008 doi: 10.1088/1681-7575/abe249
    [11]
    Gaiser C, Fellmuth B. Method for extrapolating the compressibility data of solids from room to lower temperatures. Phys Status Solidi B, 2016, 253(8): 1549 doi: 10.1002/pssb.201552717
    [12]
    Mendes S S, Filho J C A D, Melo A R A, et al. Determination of thermal expansion coefficient of a monofilament polyamide fiber using digital image correlation. Polym Test, 2020, 87: 106540 doi: 10.1016/j.polymertesting.2020.106540
    [13]
    James J D, Spittle J A, Brown S R, et al. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol, 2001, 12(3): R1 doi: 10.1088/0957-0233/12/3/201
    [14]
    Cooper R F. The thermal expansion of solids. Phys Educ, 1976, 11(4): 284 doi: 10.1016/S0031-8914(58)80103-2
    [15]
    Ventura G, Bianchini G, Gottardi E, et al. Thermal expansion and thermal conductivity of Torlon at low temperatures. Cryogenics, 1999, 39(5): 481 doi: 10.1016/S0011-2275(99)00051-X
    [16]
    Roth P, Gmelin E. A capacitance displacement sensor with elastic diaphragm. Rev Sci Instrum, 1992, 63(3): 2051 doi: 10.1063/1.1143165
    [17]
    Hamilton W O, Greene D B, Davidson D E. Thermal expansion of epoxies between 2 and 300°K. Rev Sci Instrum, 1968, 39(5): 645 doi: 10.1063/1.1683465
    [18]
    Smith M H. Technical literature digest. AIAA J, 1963, 1(8): 1971
    [19]
    Keyston J R G, MacPherson J D, Guptill E W. Coefficient of thermal expansion of Barium titanate. Rev Sci Instrum, 1959, 30(4): 246 doi: 10.1063/1.1716527
    [20]
    Pudalov V M, Khaikin M S. Dilatometer with a sensitivity of 10?4 angstrom. Cryogenics, 1969, 9(2): 128 doi: 10.1016/0011-2275(69)90194-5
    [21]
    Ewing M B, Mehl J B, Moldover M R, et al. Microwave measurements of the thermal expansion of a spherical cavity. Metrologia, 1988, 25(4): 211 doi: 10.1088/0026-1394/25/4/003
    [22]
    Moldover M R, Waxman M, Greenspan M. Spherical acoustic resonators for temperature and thermophysical property measurements. High Temp-High Press, 1979, 11: 75 doi: 10.1121/1.2019734
    [23]
    Zhang K, Feng X J, Zhang J T, et al. Microwave measurements of the length and thermal expansion of a cylindrical resonator for primary acoustic gas thermometry. Meas Sci Technol, 2017, 28(1): 015006 doi: 10.1088/1361-6501/28/1/015006
    [24]
    Rourke P M C, Hill K D. Progress toward development of low-temperature microwave refractive index gas thermometry at NRC. Int J Thermophys, 2015, 36(2): 205
    [25]
    May E F, Pitre L, Mehl J B, et al. Quasi-spherical cavity resonators for metrology based on the relative dielectric permittivity of gases. Rev Sci Instrum, 2004, 75(10): 3307
    [26]
    程永紅. 銅電解精煉工(銅電解工、硫酸鹽工). 北京: 冶金工業出版社, 2013

    Cheng Y H. Copper Electrorefining Workers (Copper Electrorefining Workers, Sulfate Workers). Beijing: Metallurgical Industry Press, 2013
    [27]
    Liu W J, Pitre L, Gao B, et al. Microwave method for closure of quasi-spherical resonator // 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). Paris, 2018: 1
    [28]
    Preston-Thomas H. The international temperature scale of 1990 (ITS-90). Metrologia, 1990, 27(1): 3 doi: 10.1088/0026-1394/27/1/002
    [29]
    Gao B, Zhang H Y, Han D X, et al. Measurement of thermodynamic temperature between 5 K and 24.5 K with single-pressure refractive-index gas thermometry. Metrologia, 2020, 57(6): 065006
    [30]
    Chen Y Y, Zhang H Y, Song Y N, et al. Thermal response characteristics of a SPRIGT primary thermometry system. Cryogenics, 2019, 97: 1 doi: 10.1016/j.cryogenics.2018.10.015
    [31]
    Hu J F, Zhang H Y, Song Y H, et al. Investigation of high-stability temperature control in primary tas thermometry. J Therm Sci, 2022, 21(3): 765 doi: 10.1016/j.scib.2018.05.023
    [32]
    Keysight Technologies. Overview of vector network analyzer [Z/OL]. Keysight Technologies (2021-03-17) [2021-12-03].https://www.keysight.com/cn/zh/assets/7018-01698/technical-overviews/5989-7603.pdf
    [33]
    Keithley. Instrument Driver Network [Z/OL]. Engineer Ambitiously (2002) [2021-12-03].https://sine.ni.com/apps/utf8/niid_web_display.model_page?p_model_id=1547
    [34]
    ISOTECH. F900 precision thermometry bridge—operator’s Handbook [Z/OL]. ISOTECH (2020) [2021-12-3]. http://www.isotechna.com/v/vspfiles/product_manuals/asl/F900.pdf
    [35]
    Lake Shore Cryotronics, Inc. Cernox®/technical-specifications [Z/OL]. Lake Shore Cryotronics (2021) [2021-12-3].https://www.lakeshore.com/products/categories/specification/temperature-products/cryogenic-temperature-sensors/cernox
    [36]
    Hu J F, Zhang H Y, Song Y N, et al. Investigation of high-stability temperature control in primary gas thermometry. J Therm Sci, 2022, 31(3): 765
    [37]
    Sutton G, Underwood R, Pitre L, et al. Acoustic resonator experiments at the triple point of water: First results for the boltzmann constant and remaining challenges. Int J Thermophys, 2010, 31(7): 1310
    [38]
    Underwood R J, Mehl J B, Pitre L, et al. Waveguide effects on quasispherical microwave cavity resonators. Meas Sci Technol, 2010, 21(7): 075103 doi: 10.1088/0957-0233/21/7/075103
    [39]
    Mehl J B. Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid II. Metrologia, 2015, 52(5): S227 doi: 10.1088/0026-1394/52/5/S227
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views (480) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频