Citation: | LI Xiao-rui, BAN Xiao-juan, YUAN Zhao-lin, QIAO Hao-ran. Review on deep learning models for time series forecasting in industry[J]. Chinese Journal of Engineering, 2022, 44(4): 757-766. doi: 10.13374/j.issn2095-9389.2021.12.02.004 |
[1] |
袁小鋒, 王雅琳, 陽春華, 等. 深度學習在流程工業過程數據建模中的應用. 智能科學與技術學報, 2020, 2(2):107
Yuan X F, Wang Y L, Yang C H, et al. The application of deep learning in data-driven modeling of process industries. Chin J Intell Sci Technol, 2020, 2(2): 107
|
[2] |
Lim B, Zohren S. Time-series forecasting with deep learning: A survey. Philos Trans Ser A Math Phys Eng Sci, 2021, 379(2194): 20200209
|
[3] |
徐鋼, 黎敏, 徐金梧, 等. 基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術. 工程科學學報, 2019, 41(4):521
Xu G, Li M, Xu J W, et al. Control technology of end-point carbon in converter steelmaking based on functional digital twin model. Chin J Eng, 2019, 41(4): 521
|
[4] |
Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [J/OL]. arXiv preprint (2014-12-11) [2021-12-02].https://arxiv.org/abs/ 1412.3555
|
[5] |
Salinas D, Flunkert V, Gasthaus J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int J Forecast, 2020, 36(3): 1181 doi: 10.1016/j.ijforecast.2019.07.001
|
[6] |
Wen R, Torkkola K, Narayanaswamy B, et al. A multi-horizon quantile recurrent forecaster [J/OL]. arXiv preprint (2018-06-28) [2021-12-02].https://arxiv.org/abs/1711.11053
|
[7] |
Oord A, Dieleman S, Zen H, et al. Wavenet: A generative model for raw audio [J/OL]. arXiv preprint (2016-09-19) [2021-12-02].https://arxiv.org/abs/1609.03499
|
[8] |
Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [J/OL]. arXiv preprint (2016-09-19) [2021-12-02].https://arxiv.org/abs/1803.01271
|
[9] |
Zhang K P, Liu Z J, Zheng L. Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning. IEEE Trans Intell Transp Syst, 2020, 21(4): 1480 doi: 10.1109/TITS.2019.2909571
|
[10] |
Zhao W T, Gao Y Y, Ji T X, et al. Deep temporal convolutional networks for short-term traffic flow forecasting. IEEE Access, 2019, 7: 114496 doi: 10.1109/ACCESS.2019.2935504
|
[11] |
Zheng C P, Fan X L, Wang C, et al. Gman: A graph multi-attention network for traffic prediction // Proceedings of the AAAI Conference on Artificial Intelligence. New York, 2020, 34(1): 1234
|
[12] |
Lea C, Flynn M D, Vidal R, et al. Temporal convolutional networks for action segmentation and detection // 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 1003
|
[13] |
Farha Y A, Gall J. Ms-tcn: Multi-stage temporal convolutional network for action segmentation // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 3570
|
[14] |
張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372
Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372
|
[15] |
徐任超, 閻威武, 王國良, 等. 基于周期性建模的時間序列預測方法及電價預測研究. 自動化學報, 2020, 46(6):1136
Xu R C, Yan W W, Wang G L, et al. Time series forecasting based on seasonality modeling and its application to electricity price forecasting. Acta Autom Sin, 2020, 46(6): 1136
|
[16] |
Yuan Z L, Hu J L, Wu D, et al. A dual-attention recurrent neural network method for deep cone thickener underflow concentration prediction. Sensors, 2020, 20(5): 1260 doi: 10.3390/s20051260
|
[17] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J/OL]. arXiv preprint (2017-12-12) [2021-12-02].https://arxiv.org/abs/1706.03762
|
[18] |
Li S Y, Jin X Y, Xuan Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting//33rd Conference on Neural Information Processing Systems. Vancouver, 2019
|
[19] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [J/OL]. arXiv preprint (2021-06-03) [2021-12-02].https://arxiv.org/abs/2010.11929
|
[20] |
Child R, Gray S, Radford A, et al. Generating long sequences with sparse transformers [J/OL]. arXiv preprint (2019-04-23) [2021-12-02].https://arxiv.org/abs/1904.10509
|
[21] |
Kitaev N, Kaiser Ł, Levskaya A. Reformer: the efficient transformer [J/OL]. arXiv preprint (2020-02-18) [2021-12-02].https://arxiv.org/abs/2001.04451
|
[22] |
Beltagy I, Peters M E, Cohan A. Longformer: the long-document transformer [J/OL]. arXiv preprint (2020-12-02) [2021-12-02].https://arxiv.org/abs/2004.05150
|
[23] |
Zhou H Y, Zhang S H, Peng J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [J/OL]. arXiv preprint (2020-03-28) [2021-12-02].https://arxiv.org/abs/2012.07436
|
[24] |
Wu H X, Xu J H, Wang J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting [J/OL]. arXiv preprint (2021-06-24) [2021-12-02].https://arxiv.org/abs/2106.13008
|
[25] |
Botchkarev A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology [J/OL]. arXiv preprint (2018-09-09) [2021-12-02].https://arxiv.org/abs/1809.03006
|
[26] |
Cui Y, Xie J D, Zheng K. Historical inertia: A neglected but powerful baseline for long sequence time-series forecasting // Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Gold Coast, 2021: 2965
|
[27] |
Moor B D, Gersem P D, Schutter B D, et al. DAISY: A database for identification of systems. J A, 1997, 38(3): 4
|
[28] |
Dua D, Graff C. UCI Machine Learning Repository [DB/OL]. University of California, School of Information and Computer Science (2021-06-05)[2021-12-02].https://archive.ics.uci.edu/ml/index.php
|
[29] |
Godahewa R, Bergmeir C, Webb G I, et al. Monash time series forecasting archive [J/OL]. arXiv preprint (2021-05-14) [2021-12-02].https://arxiv.org/abs/2105.06643
|
[30] |
王洪江, 王小林, 張璽, 等. 超細全尾砂深錐動態絮凝濃密試驗. 工程科學學報, 2022, 44(2):163
Wang H J, Wang X L, Zhang X, et al. Deep cone dynamic flocculation thickening of ultrafine full tailings. Chin J Eng, 2022, 44(2): 163
|
[31] |
Sun Q Q, Ge Z Q. Probabilistic sequential network for deep learning of complex process data and soft sensor application. IEEE Trans Ind Inform, 2019, 15(5): 2700 doi: 10.1109/TII.2018.2869899
|
[32] |
Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Trans Ind Inform, 2020, 16(5): 3168 doi: 10.1109/TII.2019.2902129
|
[33] |
姚志賓, 牛文靜, 張宇, 等. 巖爆數據庫管理系統開發及應用. 工程科學學報,http://doi.org/10.13374/j.issn2095-9389.2021.08.12.002
Yao Z B, Niu W J, Zhang Y, et al. Development and application of a rockburst database management system. Chin J Eng, http://doi.org/10.13374/j.issn2095-9389.2021.08.12.002
|
[34] |
Nú?ez F, Langarica S, Díaz P, et al. Neural network-based model predictive control of a paste thickener over an industrial Internet platform. IEEE Trans Ind Inform, 2020, 16(4): 2859 doi: 10.1109/TII.2019.2953275
|
[35] |
Zhang H, Tang Z H, Xie Y F, et al. Feature reconstruction-regression network: A light-weight deep neural network for performance monitoring in the froth flotation. IEEE Trans Ind Inform, 2021, 17(12): 8406 doi: 10.1109/TII.2020.3046278
|
[36] |
Yuan Z L, Li X R, Wu D, et al. Continuous-time prediction of industrial paste thickener system with differential ODE-net. IEEE/CAA J Autom Sin, 2022, 9(4): 686 doi: 10.1109/JAS.2022.105464
|
[37] |
Fan D Y, Sun H, Yao J, et al. Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy, 2021, 220: 119708 doi: 10.1016/j.energy.2020.119708
|
[38] |
Zhang X G, Lei Y Y, Chen H, et al. Multivariate time-series modeling for forecasting sintering temperature in rotary kilns using DCGNet. IEEE Trans Ind Inform, 2021, 17(7): 4635 doi: 10.1109/TII.2020.3022019
|
[39] |
Li J F, Yang C J, Li Y X, et al. A context-aware enhanced GRU network with feature-temporal attention for prediction of silicon content in hot metal. IEEE Trans Ind Inform,https://ieeexplore.ieee.org/document/9537301
|
[40] |
Du S, Wu M, Chen L F, et al. Operating mode recognition of iron ore sintering process based on the clustering of time series data. Control Eng Pract, 2020, 96: 104297 doi: 10.1016/j.conengprac.2020.104297
|
[41] |
袁兆麟, 何潤姿, 姚超, 等. 基于強化學習的濃密機底流濃度在線控制算法. 自動化學報, 2021, 47(7):1558
Yuan Z L, He R Z, Yao C, et al. Online reinforcement learning control algorithm for concentration of thickener underflow. Acta Autom Sin, 2021, 47(7): 1558
|
[42] |
Long J Y, Sun Z Z, Pardalos P M, et al. A robust dynamic scheduling approach based on release time series forecasting for the steelmaking-continuous casting production. Appl Soft Comput, 2020, 92: 106271 doi: 10.1016/j.asoc.2020.106271
|
[43] |
Han Y M, Zhou R D, Geng Z Q, et al. Production prediction modeling of industrial processes based on Bi-LSTM // 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Jinzhou, 2019: 285
|
[44] |
Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction. IEEE Trans Ind Inform, 2020, 16(12): 7233 doi: 10.1109/TII.2018.2880968
|
[45] |
Essien A, Giannetti C. A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders. IEEE Trans Ind Inform, 2020, 16(9): 6069 doi: 10.1109/TII.2020.2967556
|
[46] |
Antonopoulos I, Robu V, Couraud B, et al. Data-driven modelling of energy demand response behaviour based on a large-scale residential trial. Energy AI, 2021, 4: 100071 doi: 10.1016/j.egyai.2021.100071
|
[47] |
Rojat T, Puget R, Filliat D, et al. Explainable artificial intelligence (XAI) on TimeSeries data: A survey [J/OL]. arXiv preprint (2021-04-02) [2021-12-02].https://arxiv.org/abs/2104.00950
|
[48] |
Demeester T. System identification with time-aware neural sequence models [J/OL]. arXiv preprint (2019-11-21) [2021-12-02].https://arxiv.org/abs/1911.09431
|
[49] |
Fatehi A, Huang B. Kalman filtering approach to multi-rate information fusion in the presence of irregular sampling rate and variable measurement delay. J Process Control, 2017, 53: 15 doi: 10.1016/j.jprocont.2017.02.010
|
[50] |
Martí L, Sanchez-Pi N, Molina J M, et al. Anomaly detection based on sensor data in petroleum industry applications. Sens (Basel Switz)
|
[51] |
Malhotra P, Ramakrishnan A, Anand G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection [J/OL]. arXiv preprint (2016-07-11) [2021-12-02].https://arxiv.org/abs/1607.00148
|
[52] |
Siddiqui S A, Mercier D, Munir M, et al. Tsviz: demystification of deep learning models for time-series analysis. IEEE Access, 2019, 7: 67027 doi: 10.1109/ACCESS.2019.2912823
|
[53] |
Schockaert C, Leperlier R, Moawad A. Attention mechanism for multivariate time series recurrent model interpretability applied to the ironmaking industry [J/OL]. arXiv preprint (2020-07-15) [2021-12-02].https://arxiv.org/abs/2007.12617
|
[54] |
Ribeiro M T, Singh S, Guestrin C. “Why should I trust You?”: Explaining the predictions of any classifier // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, 2016: 1135
|
[55] |
Lundberg S M, Lee S I. A unified approach to interpreting model predictions [J/OL]. arXiv preprint (2017-11-25) [2021-12-02].https://arxiv.org/abs/1705.07874
|
[56] |
Serradilla O, Zugasti E, Cernuda C, et al. Interpreting remaining useful life estimations combining explainable artificial intelligence and domain knowledge in industrial machinery // 2020 IEEE International Conference on Fuzzy Systems. Glasgow, 2020: 1
|