Citation: | ZHANG He, FENG Jia-yun, CONG Sen, WANG Shang, AN Rong, WU Lang, TIAN Yan-hong. Long-term storage life prediction and growth kinetics of intermetallic compounds in 62Sn36Pb2Ag solder joints[J]. Chinese Journal of Engineering, 2023, 45(3): 400-406. doi: 10.13374/j.issn2095-9389.2021.11.14.002 |
[1] |
李正兵, 王德, 胡德安, 等. 耐高溫瞬時液相連接無鉛釬焊接頭的時效穩定性. 材料工程, 2021, 49(10): 82
Li Z B, Wang D, Hu D A, et al. High temperature resistant aging stability of lead-free solder joints by TLP bonding. J Mater Eng, 2021, 49(10): 82
|
[2] |
Chou T T, Fleshman C J, Chen H, et al. Improving thermal shock response of interfacial IMCs in Sn–Ag–Cu joints by using ultrathin-Ni/Pd/Au metallization in 3D-IC packages. J Mater Sci Mater Electron, 2019, 30(3): 2342 doi: 10.1007/s10854-018-0507-x
|
[3] |
Kavitha M, Mahmoud Z H, Kishore K H, et al. Application of steinberg model for vibration lifetime evaluation of Sn–Ag–Cu-based solder joints in power semiconductors. IEEE Trans Compon Packag Manuf Technol, 2021, 11(3): 444 doi: 10.1109/TCPMT.2021.3051318
|
[4] |
Hu S H, Lin T C, Kao C L, et al. Effects of bismuth additions on mechanical property and microstructure of SAC-Bi solder joint under current stressing. Microelectron Reliab, 2021, 117: 114041 doi: 10.1016/j.microrel.2021.114041
|
[5] |
Adetunji O R, Ashimolowo R A, Aiyedun P O, et al. Tensile, hardness and microstructural properties of Sn–Pb solder alloys. Mater Today Proc, 2021, 44: 321 doi: 10.1016/j.matpr.2020.09.656
|
[6] |
Werner M, Weinberg K. Experimental investigation of microstructural effects in Sn–Pb solder accumulated during ten years of service life. Micro Nanosyst, 2021, 13(2): 170 doi: 10.2174/1876402912999200518104018
|
[7] |
Wang F J, Li D Y, Tian S, et al. Interfacial behaviors of Sn–Pb, Sn–Ag–Cu Pb-free and mixed Sn–Ag–Cu/Sn–Pb solder joints during electromigration. Microelectron Reliab, 2017, 73: 106 doi: 10.1016/j.microrel.2017.04.031
|
[8] |
Ji X, An Q, Xia Y P, et al. Maximum shear stress-controlled uniaxial tensile deformation and fracture mechanisms and constitutive relations of Sn–Pb eutectic alloy at cryogenic temperatures. Mater Sci Eng A, 2021, 819: 141523 doi: 10.1016/j.msea.2021.141523
|
[9] |
丁穎, 申坤, 張冉. 62Sn36Pb2Ag 釬料中Ag元素對AgCu/SnPbAg/CuBe焊縫性能的影響. 焊接學報, 2011, 32(8):65
Ding Y, Shen K, Zhang R. Influence of Ag element in 62Sn36Pb2Ag on properties of AgCu/SnPbAg /CuBe solder joint. Trans China Weld Inst, 2011, 32(8): 65
|
[10] |
劉顯文. 電子產品生產中虛焊分析及預防 // 2018中國高端SMT學術會議論文集. 蘇州, 2018, 7: 199
Liu X W. Analysis and prevention of virtual welding in electronic product production // 2018 China High-end SMT Academic Conference Proceedings. Suzhou, 2018, 7: 199
|
[11] |
肖慧, 李曉延, 李鳳輝. 熱循環條件下SnAgCu/Cu焊點金屬間化合物生長及焊點失效行為. 材料工程, 2010, 38(10):38 doi: 10.3969/j.issn.1001-4381.2010.10.009
Xiao H, Li X Y, Li F H. Growth kinetic of intermetallic compounds and failure behavior for SnAgCu/Cu solder joints subjected to thermal cycling. J Mater Eng, 2010, 38(10): 38 doi: 10.3969/j.issn.1001-4381.2010.10.009
|
[12] |
Madanipour H, Kim Y R, Kim C U, et al. Study of electromigration in Sn–Ag–Cu micro solder joint with Ni interfacial layer. J Alloys Compd, 2021, 862: 158043 doi: 10.1016/j.jallcom.2020.158043
|
[13] |
Li Q H, Li C F, Zhang W, et al. Microstructural evolution and failure mechanism of 62Sn36Pb2Ag/Cu solder joint during thermal cycling. Microelectron Reliab, 2019, 99: 12 doi: 10.1016/j.microrel.2019.05.015
|
[14] |
Qiao Y Y, Ma H T, Yu F Y, et al. Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu–Sn IMCs under temperature gradient. Acta Mater, 2021, 217: 117168 doi: 10.1016/j.actamat.2021.117168
|
[15] |
Wang H Z, Hu X W, Jiang X X. Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn–3.0Ag–0. 5Cu composite solder joints. Mater Charact, 2020, 163: 110287
|
[16] |
Gui Z X, Hu X W, Jiang X X, et al. Interfacial reaction, wettability, and shear strength of ultrasonic-assisted lead-free solder joints prepared using Cu–GNSs-doped flux. J Mater Sci Mater Electron, 2021, 32(19): 24507 doi: 10.1007/s10854-021-06929-9
|
[17] |
Wang J N, Chen J S, Zhang Z Y, et al. Effects of doping trace Ni element on interfacial behavior of Sn/Ni (polycrystal/single-crystal) joints. Solder Surf Mo Technol, 2022, 34(2): 124 doi: 10.1108/SSMT-08-2021-0053
|
[18] |
秦飛, 別曉銳, 陳思, 等. 隨機振動載荷下塑封球柵陣列含鉛焊點疲勞壽命模型. 振動與沖擊, 2021, 40(2):164
Qin F, Bie X R, Chen S, et al. Vibration lifetime modelling of PBGA solder joints under random vibration loading. J Vib Shock, 2021, 40(2): 164
|
[19] |
Cui J, Zhang K, Zhao D, et al. Microstructure and shear properties of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling. Sci Reports, 2021, 11: 6297
|
[20] |
Chao B, Chae S H, Zhang X F, et al. Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing. Acta Mater, 2007, 55(8): 2805 doi: 10.1016/j.actamat.2006.12.019
|
[21] |
Li J, Xu H B, Hokka J, et al. Finite element analyses and lifetime predictions for SnAgCu solder interconnections in thermal shock tests. Solder Surf Mo Technol, 2011, 23(3): 161 doi: 10.1108/09540911111146917
|
[22] |
金玲玥, 孫海燕, 周婷, 等. LGA焊點可靠性分析及熱疲勞壽命預測. 電子元件與材料, 2021, 40(9):893
Jin L Y, Sun H Y, Zhou T, et al. LGA solder joint reliability and thermal fatigue life prediction. Electron Compon Mater, 2021, 40(9): 893
|
[23] |
李躍, 田艷紅, 叢森, 等. PCB組裝板多器件焊點疲勞壽命跨尺度有限元計算. 機械工程學報, 2019, 55(6):54 doi: 10.3901/JME.2019.06.054
Li Y, Tian Y H, Cong S, et al. Multi-scale finite element analysis into fatigue lives of various component solder joints on printed circuit board. J Mech Eng, 2019, 55(6): 54 doi: 10.3901/JME.2019.06.054
|
[24] |
Syed A. Predicting solder joint reliability for thermal, power, and bend cycle within 25% accuracy // 2001 Proceedings 51st Electronic Components and Technology Conference. Orlando, 2001: 255
|
[25] |
Tian R Y, Hang C J, Tian Y H, et al. Brittle fracture induced by phase transformation of Ni–Cu–Sn intermetallic compounds in Sn–3Ag–0.5Cu/Ni solder joints under extreme temperature environment. J Alloys Compd, 2019, 777: 463
|
[26] |
Tian R Y, Hang C J, Tian Y H, et al. Brittle fracture of Sn–37Pb solder joints induced by enhanced intermetallic compound growth under extreme temperature changes. J Mater Process Technol, 2019, 268: 1 doi: 10.1016/j.jmatprotec.2019.01.006
|
[27] |
彭磊. 多層瓷介電容器長期貯存壽命可靠性研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016
Peng L. Research on Long-Life Storage Reliability of Multilayer Ceramic Capcatior [Dissertation]. Harbin: Harbin Institute of Technology, 2016
|
[28] |
路承功, 魏智強, 喬紅霞, 等. 基于3參數Weibull分布鋼筋混凝土鹽腐蝕環境中可靠性壽命分析. 工程科學學報, 2021, 43(4):512
Lu C G, Wei Z Q, Qiao H X, et al. Reliability life analysis of reinforced concrete in a salt corrosion environment based on a three-parameter Weibull distribution. Chin J Eng, 2021, 43(4): 512
|