<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LI Qi-lan, ZHANG Li-feng, CHEN Wei, WANG Ya-dong, ZHAO Zhen, ZHANG Jing. Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring[J]. Chinese Journal of Engineering, 2022, 44(4): 690-702. doi: 10.13374/j.issn2095-9389.2021.11.01.003
Citation: LI Qi-lan, ZHANG Li-feng, CHEN Wei, WANG Ya-dong, ZHAO Zhen, ZHANG Jing. Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring[J]. Chinese Journal of Engineering, 2022, 44(4): 690-702. doi: 10.13374/j.issn2095-9389.2021.11.01.003

Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring

doi: 10.13374/j.issn2095-9389.2021.11.01.003
More Information
  • Due to the closed environment with high temperature and pressure in the continuous casting (CC) process, numerical simulation technology with flexible control and low cost of phenomena in the CC mold has been a research hotspot. The multiphase flow, heat transfer, solidification of steel and slag, and other complex interaction in the mold are some of the simulation difficulties. Various physical models have been established in recent studies to obtain the reactions and effects of the different phases. However, the influence of different models on the simulation results is rarely studied. In the current study, a three-dimensional (3D) mathematical model, coupled with the large eddy simulation (LES) turbulent model and volume of fluid (VOF) multiphase model, was established to investigate the multiphase flow, slag-steel interface level fluctuation, and slag entrainment in the mold of a steel bloom CC with mold electromagnetic stirring (M-EMS). The air?slag?steel three-phase flow, slag?steel two-phase flow, and steel single-phase flow were compared. An industrial computerized tomography (CT) was used to detect the large entrainment slag inclusions in blooms with different stirring current intensities. With a 150-A current intensity and a 2-Hz frequency electromagnetic stirring at the mold, the multiphase flows are approximately identical for the three models, although different at the slag?steel interface. The speed on the top surface of the single-phase model is higher than that of the multiphase models. The level fluctuation of the two-phase model is slightly more severe than that of the three-phase model, and the net slag entrainment rates of the two-phase and three-phase models are 0.00118 and 0.00040 kg·s?1, respectively. The turbulence kinetic energy at the slag?steel interface of the two-phase model is significantly greater than that of the three-phase model because the turbulence kinetic energy can not be dissipated, unlike that in the actual process. Thus, the predicated slag entrainment obtained by the two-phase model is higher. On increasing the stirring current intensity to 300 A, the net slag entrainment rate is 5 times and 15 times higher for the two-phase and three-phase model higher than that under 150 A; when the current frequency increases to 4 Hz, the net slag entrainment rate of the two-phase model varies little, while that of the three-phase model becomes 1/3 of that under 2 Hz. To accurately simulate and predict the slag entrainment phenomena at the CC mold, the air?slag?steel three-phase multiphase model should be mandatory.

     

  • loading
  • [1]
    Thomas B G, Zhang L F. Mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 41(10): 1181 doi: 10.2355/isijinternational.41.1181
    [2]
    譚金池, 張斌, 袁富, 等. 板坯連鑄結晶器三維流場模擬仿真研究. 江西冶金, 2020, 40(6):11

    Tan J C, Zhang B, Yuan F, et al. Simulation of three-dimensional flow field in slab continuous casting mold. Jiangxi Metall, 2020, 40(6): 11
    [3]
    李超, 王斌. 基于雙方程的大渦模擬分析連鑄結晶器內鋼液流動特性. 山西冶金, 2020, 43(3):1

    Li C, Wang B. Large eddy simulation analysis of molten steel flow characteristics in continuous casting mould based on double equation. Shanxi Metall, 2020, 43(3): 1
    [4]
    Zhao B, Thomas B G, Vanka S P, et al. Transient fluid flow and superheat transport in continuous casting of steel slabs. Metall Mater Trans B, 2005, 36(6): 801 doi: 10.1007/s11663-005-0083-3
    [5]
    劉中秋, 李寶寬, 姜茂發, 等. 連鑄結晶器內氫氣/鋼液兩相非穩態湍流特性的大渦模擬研究. 金屬學報, 2013, 49(5):513 doi: 10.3724/SP.J.1037.2012.00760

    Liu Z Q, Li B K, Jiang M F, et al. Large eddy simulation of unsteady argon/steel two phase turbulent flow in a continuous casting mold. Acta Metall Sin, 2013, 49(5): 513 doi: 10.3724/SP.J.1037.2012.00760
    [6]
    陳威, 張立峰. 板坯連鑄結晶器內夾雜物分布的大渦模擬. 中國冶金, 2018, 28(S1): 26

    Chen W, Zhang L F. Large eddy simulation of transport and distribution of inclusions in continuous casting slab strand. China Metall, 2018, 28(Suppul 1): 26
    [7]
    Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model. Metall Mater Trans B, 1999, 30(6): 1095 doi: 10.1007/s11663-999-0116-4
    [8]
    王軍, 于海岐, 朱苗勇. 中薄板坯連鑄結晶器鋼/渣界面行為數值模擬. 材料與冶金學報, 2008, 7(4):243 doi: 10.3969/j.issn.1671-6620.2008.04.002

    Wang J, Yu H Q, Zhu M Y. Numerical simulation of interfacial behaviour between molten steel and slag in medium-thin slab continuous casting mold. J Mater Metall, 2008, 7(4): 243 doi: 10.3969/j.issn.1671-6620.2008.04.002
    [9]
    Sun X H, Li B, Lu H B, et al. Steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold. Metals, 2019, 9(9): 983 doi: 10.3390/met9090983
    [10]
    劉中秋, 齊鳳升, 李寶寬, 等. 板坯連鑄結晶器內渣/金界面非穩態波動行為. 東北大學學報(自然科學版), 2014, 35(12):1733 doi: 10.12068/j.issn.1005-3026.2014.12.014

    Liu Z Q, Qi F S, Li B K, et al. Unsteady fluctuation behavior of slag-metal interface in a slab continuous casting mold. J Northeast Univ (Nat Sci), 2014, 35(12): 1733 doi: 10.12068/j.issn.1005-3026.2014.12.014
    [11]
    Chen W, Ren Y, Zhang L F, et al. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES?+?VOF?+?DPM model. JOM, 2019, 71(3): 1158 doi: 10.1007/s11837-018-3255-8
    [12]
    Wang Y F, Zhang L F. Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake. Metall Mater Trans B, 2011, 42(6): 1319 doi: 10.1007/s11663-011-9554-x
    [13]
    Chen W, Zhang L F, Wang Y D, et al. Mathematical simulation of two-phase flow and slag entrainment during steel bloom continuous casting. Powder Technol, 2021, 390: 539 doi: 10.1016/j.powtec.2021.05.101
    [14]
    Zhang X B, Chen W, Zhang L F. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold. China Foundry, 2017, 14(5): 416 doi: 10.1007/s41230-017-7171-2
    [15]
    盧春曉, 毛譽敏, 張旭彬, 等. 保護渣黏度對連鑄潤滑影響的模擬仿真. 連鑄, 2021, 46(2):43

    Lu C X, Mao Y M, Zhang X B, et al. Effect of viscosity of mold flux on infiltration in steel continuous casting by numerical simulation. Continuous Cast, 2021, 46(2): 43
    [16]
    王林杰, 孔令種, 馮亮花, 等. 高拉速方坯連鑄結晶器鋼渣界面行為特征. 連鑄, 2021, 46(4):11

    Wang L J, Kong L Z, Feng L H, et al. Interfacial behavior of steel and slag in billet mold during high casting speed. Continuous Cast, 2021, 46(4): 11
    [17]
    任磊, 張立峰, 王強強, 等. 基于PIV技術的板坯連鑄結晶器內鋼水流動行為研究. 工程科學學報, 2016, 38(10):1393

    Ren L, Zhang L F, Wang Q Q, et al. Study on fluid flow in a continuous casting slab mold using particle image velocimetry. Chin J Eng, 2016, 38(10): 1393
    [18]
    Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
    [19]
    Chaudhary R, Thomas B G, Vanka S P. Effect of electromagnetic ruler braking (EMBr) on transient turbulent flow in continuous slab casting using large eddy simulations. Metall Mater Trans B, 2012, 43(3): 532 doi: 10.1007/s11663-012-9634-6
    [20]
    Schwarze R. Unsteady RANS simulation of oscillating mould flows. Int J Numer Meth Fluids, 2006, 52(8): 883 doi: 10.1002/fld.1208
    [21]
    Ni P Y, Ersson M, Jonsson L, et al. Numerical study on the influence of a swirling flow tundish on multiphase flow and heat transfer in mold. Metals, 2018, 8(5): 368 doi: 10.3390/met8050368
    [22]
    Asad A, Kratzsch C, Schwarze R. Numerical investigation of the free surface in a model mold. Steel Res Int, 2016, 87(2): 181 doi: 10.1002/srin.201400600
    [23]
    Bielnicki M, Jowsa J. Physical and numerical modeling of liquid slag entrainment in mould during slabs casting. Metall Res Technol, 2020, 117(5): 509 doi: 10.1051/metal/2020055
    [24]
    Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–volume of fluid (VOF) coupled model. JOM, 2015, 67(7): 1459 doi: 10.1007/s11837-015-1465-x
    [25]
    Zhao P, Zhou L H. Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould. Ironmak Steelmak, 2019, 46(9): 886 doi: 10.1080/03019233.2019.1604613
    [26]
    Zhao P, Li Q, Kuang S B, et al. Mathematical modeling of liquid slag layer fluctuation and slag droplets entrainment in a continuous casting mold based on VOF-LES method. High Temp Mater Process, 2017, 36(5): 551 doi: 10.1515/htmp-2016-0143
    [27]
    Liu Z Q, Li B K. Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows. Chem Eng J, 2018, 338: 465 doi: 10.1016/j.cej.2018.01.051
    [28]
    Xiao C, Zhang J M, Luo Y Z, et al. Control of macrosegregation behavior by applying final electromagnetic stirring for continuously cast high carbon steel billet. J Iron Steel Res Int, 2013, 20(11): 13 doi: 10.1016/S1006-706X(13)60190-9
    [29]
    李建超, 王寶峰, 王曉東, 等. 連鑄圓坯凝固末端電磁攪拌位置及工藝參數優化. 特種鑄造及有色合金, 2014, 34(8):853

    Li J C, Wang B F, Wang X D, et al. Optimization of stirring position and parameters of final electromagnetic stirring process for continuous casting bloom. Special Cast Nonferrous Alloys, 2014, 34(8): 853
    [30]
    Javurek M, Barna M, Gittler P, et al. Flow modelling in continuous casting of round bloom strands with electromagnetic stirring. Steel Res Int, 2008, 79(8): 617 doi: 10.1002/srin.200806174
    [31]
    Wang Y D, Zhang L F, Chen W, et al. Three-dimensional macrosegregation model of bloom in curved continuous casting process. Metall Mater Trans B, 2021, 52(4): 2796 doi: 10.1007/s11663-021-02231-5
    [32]
    Liao Y L, Yao Y F. Applications analysis of the technology of mold electromagnetic stirring in a steel mill. Adv Mater Res, 2013, 721: 471 doi: 10.4028/www.scientific.net/AMR.721.471
    [33]
    胡招凡, 張炯明, 蔡珍, 等. 結晶器電磁攪拌對IF鋼連鑄坯表層純凈度的影響. 鋼鐵研究學報, 2011, 23(10):15

    Hu Z F, Zhang J M, Cai Z, et al. Effects of M-EMS on surface cleaniness of IF steel slab. J Iron Steel Res, 2011, 23(10): 15
    [34]
    雷少武, 張炯明, 董其鵬, 等. 電磁攪拌對板坯表層大型夾雜物分布的影響. 工業加熱, 2014, 43(4):23 doi: 10.3969/j.issn.1002-1639.2014.04.007

    Lei S W, Zhang J M, Dong Q P, et al. Effect of electromagnetic stirring on the distribution of large inclusion in the surface layer. Ind Heat, 2014, 43(4): 23 doi: 10.3969/j.issn.1002-1639.2014.04.007
    [35]
    Lan X K, Khodadadi J M. Fluid flow, heat transfer and solidification in the mold of continuous casters during ladle change. Int J Heat Mass Transf, 2001, 44(5): 953 doi: 10.1016/S0017-9310(00)00145-9
    [36]
    Qiu S T, Liu H P, Peng S H, et al. Numerical analysis of thermal-driven buoyancy flow in the steady macro-solidification process of a continuous slab caster. ISIJ Int, 2004, 44(8): 1376 doi: 10.2355/isijinternational.44.1376
    [37]
    Tian X Y, Zou F, Li B W, et al. Numerical analysis of coupled fluid flow, heat transfer and macroscopic solidification in the thin slab funnel shape mold with a new type EMBr. Metall Mater Trans B, 2010, 41(1): 112 doi: 10.1007/s11663-009-9314-3
    [38]
    Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071
    [39]
    Trindade L B, Vilela A C F, Filho A F F, et al. Numerical model of electromagnetic stirring for continuous casting billets. IEEE Trans Magn, 2002, 38(6): 3658 doi: 10.1109/TMAG.2002.804804
    [40]
    Liu H P, Xu M G, Qiu S T, et al. Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring. Metall Mater Trans B, 2012, 43(6): 1657 doi: 10.1007/s11663-012-9737-0
    [41]
    Yu H Q, Zhu M Y. Influence of electromagnetic stirring on transport phenomena in round billet continuous casting mould and macrostructure of high carbon steel billet. Ironmak Steelmak, 2012, 39(8): 574 doi: 10.1179/0301923312Z.00000000058
    [42]
    Smagorinsky J. General circulation experiments with the primitive equations. Mon Wea Rev, 1963, 91(3): 99 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [43]
    Yuan Q, Vanka S P, Thomas B G, et al. Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster. Metall Mater Trans B, 2004, 35(5): 967
    [44]
    Steinier J, Termonia Y, Deltour J. Smoothing and differentiation of data by simplified least square procedure. Anal Chem, 1972, 44(11): 1906 doi: 10.1021/ac60319a045
    [45]
    Zhou H C, Zhang L F, Zhou Q Y, et al. Clogging-induced asymmetrical and transient flow pattern in a steel continuous casting slab strand measured using nail boards. Steel Res Int, 2021, 92(4): 2000547 doi: 10.1002/srin.202000547
    [46]
    陳威, 周海忱, 王勝東, 等. 吹氬流量對結晶器流場影響的插釘工業試驗. 鋼鐵, 2019, 54(8):102

    Chen W, Zhou H C, Wang S D, et al. Nail board industrial experiment on effect of argon flow rate on mold flow field. Iron Steel, 2019, 54(8): 102
    [47]
    宮武旗, 黃淑娟, 徐忠. 邊界層中湍動能和耗散能最大的尺度分量特征研究. 航空學報, 2001, 22(4):293 doi: 10.3321/j.issn:1000-6893.2001.04.002

    Gong W Q, Huang S J, Xu Z. Characteristics of scale components having maximal dynamic energy and dissipation energy in smooth turbulent boundary layer. Acta Aeronaut Astronaut Sin, 2001, 22(4): 293 doi: 10.3321/j.issn:1000-6893.2001.04.002
    [48]
    劉心洪, 閔健, 潘春妹, 等. 采用大渦PIV方法研究攪拌槽內湍流動能耗散率. 過程工程學報, 2008, 8(3):425 doi: 10.3321/j.issn:1009-606X.2008.03.002

    Liu X H, Min J, Pan C M, et al. Investigation of turbulence kinetic energy dissipation rate in a stirred tank using large eddy PIV approach. Chin J Process Eng, 2008, 8(3): 425 doi: 10.3321/j.issn:1009-606X.2008.03.002
    [49]
    Cui L X, Lei X H, Zhang L F, et al. Three-dimensional characterization of defects in continuous casting blooms of heavy rail steel using X-ray computed tomography. Metall Mater Trans B, 2021, 52(4): 2327 doi: 10.1007/s11663-021-02172-z
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article views (1399) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频