Citation: | XU Meng-di, HE Lin, SI Wei-han, BAO Xi-cheng, LIU Xiao-kang, XING Yao-wen, GUI Xia-hui, CAO Yi-jun. Influence mechanism of fatty acid unsaturation on the intensification of low-rank coal flotation[J]. Chinese Journal of Engineering, 2023, 45(2): 195-205. doi: 10.13374/j.issn2095-9389.2021.10.26.001 |
[1] |
謝和平, 吳立新, 鄭德志. 2025年中國能源消費及煤炭需求預測. 煤炭學報, 2019, 44(7):1949 doi: 10.13225/j.cnki.jccs.2019.0585
Xie H P, Wu L X, Zheng D Z. Prediction on the energy consumption and coal demand of China in 2025. J China Coal Soc, 2019, 44(7): 1949 doi: 10.13225/j.cnki.jccs.2019.0585
|
[2] |
翁非. 中國能源結構特征及發展前瞻. 經濟視角(下), 2012(1):90
Weng F. Characteristics of China's energy structure and its development prospect. Econ Vis, 2012(1): 90
|
[3] |
蔡美峰, 吳允權, 李鵬, 等. 寧夏地區煤炭資源綠色開發現狀與思路. 工程科學學報, 2022, 44(1):1
Cai M F, Wu Y Q, Li P, et al. Present situation and ideas of green development of coal resources in Ningxia. Chin J Eng, 2022, 44(1): 1
|
[4] |
高淑玲, 劉炯天. 低階煤表面改性制備超凈煤初探. 煤炭技術, 2004, 23(9):68 doi: 10.3969/j.issn.1008-8725.2004.09.049
Gao S L, Liu J T. Primary search on making low rank coal to super pure coal by surface modification. Coal Technol, 2004, 23(9): 68 doi: 10.3969/j.issn.1008-8725.2004.09.049
|
[5] |
屈進州. 低階煤活性油泡浮選行為與浮選工藝研究[學位論文]. 徐州: 中國礦業大學, 2015
Qu J Z. Research on Reactive Oily Bubble Flotation Behavior of Low Rank Coal and its Flotation Technique [Dissertation]. Xuzhou: China University of Mining and Technology, 2015
|
[6] |
陳松降. 神東長焰煤的表/界面特征及與活性油泡粘附的作用機制[學位論文]. 徐州: 中國礦業大學, 2020
Chen S J. Surface/interface Characteristics of Shendong Long-flame Coal and its Attachment Mechanism with Reactive Oily Bubbles [Dissertation]. Xuzhou: China University of Mining and Technology, 2020
|
[7] |
桂夏輝. 煤泥分選過程強化及兩段式分選研究[學位論文]. 徐州: 中國礦業大學, 2012
Gui X H. Two-stage Separation and Process Intensification of Fine Coal [Dissertation]. Xuzhou: China University of Mining and Technology, 2012
|
[8] |
劉炯天. 關于我國煤炭能源低碳發展的思考. 中國礦業大學學報(社會科學版), 2011, 13(1):5
Liu J T. Reflection on low-carbon development of coal energy in China. J China Univ Min &Technol (Soc Sci)
|
[9] |
Xing Y W, Gui X H, Cao Y J, et al. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technol, 2017, 305: 166 doi: 10.1016/j.powtec.2016.10.003
|
[10] |
Sen R, Srivastava S K, Singh M M. Aerial oxidation of coal-analytical methods, instrumental techniques and test methods: A survey. Indian J Chem Technol, 2009, 16(2): 103
|
[11] |
Chen S J, Yang Z, Chen L, et al. Wetting thermodynamics of low rank coal and attachment in flotation. Fuel, 2017, 207: 214
|
[12] |
Jia R H, Harris G H, Fuerstenau D W. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int J Miner Process, 2000, 58(1-4): 99 doi: 10.1016/S0301-7516(99)00024-1
|
[13] |
Wen B F, Xia W C, Sokolovic J M. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals. Powder Technol, 2017, 319: 1 doi: 10.1016/j.powtec.2017.06.030
|
[14] |
晉偉. 植物油捕收劑強化低階煤浮選試驗研究[學位論文]. 徐州: 中國礦業大學, 2019
Jin W. Study on Vegetable Oil Collector Enhanced Low-rank Coal Flotation [Dissertation]. Xuzhou: China University of Mining and Technology, 2019
|
[15] |
Dey S. Enhancement in hydrophobicity of low rank coal by surfactants–a critical overview. Fuel Process Technol, 2012, 94(1): 151 doi: 10.1016/j.fuproc.2011.10.021
|
[16] |
Gui X H, Xing Y W, Wang T X, et al. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid. Powder Technol, 2017, 305: 109 doi: 10.1016/j.powtec.2016.09.058
|
[17] |
Miao Z Y, Xing Y W, Gui X H, et al. Anthracite coal flotation using dodecane and nonyl benzene. Int J Coal Prep Util, 2017, 38(8): 393
|
[18] |
梁經冬. 不飽和脂肪酸的自氧化現象及其反應產物的浮選性能與作用機理. 礦冶工程, 1986, 6(3):28
Liang J D. Auto-oxidation of unsaturated fatty acid as well as its reaction products and action mechanism. Min Metall Eng, 1986, 6(3): 28
|
[19] |
金龍哲, 趙金丹, 王輝, 等. 煤基活性炭改性及其甲烷吸附能力. 工程科學學報, 2022, 44(4):526
Jin L Z, Zhao J D, Wang H, et al. Characteristic modification of coal-based activated carbon and its methane adsorption capacity. Chin J Eng, 2022, 44(4): 526
|
[20] |
Zhu C Y, Li G S, Xing Y W, et al. Adhesion forces for water/oil droplet and bubble on coking coal surfaces with different roughness. Int J Min Sci Technol, 2021, 31(4): 681 doi: 10.1016/j.ijmst.2021.03.002
|
[21] |
Wender I. Catalytic synthesis of chemicals from coal. Catal Rev, 1976, 14(1): 97 doi: 10.1080/03602457608073408
|
[22] |
Xu M D, Xing Y W, Cao Y J, et al. Waste colza oil used as renewable collector for low rank coal flotation. Powder Technol, 2019, 344: 611 doi: 10.1016/j.powtec.2018.12.058
|
[23] |
Xing Y W, Gui X H, Cao Y J, et al. Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification. J Clean Prod, 2017, 153: 657 doi: 10.1016/j.jclepro.2016.11.057
|
[24] |
Xu M D, Guo F Y, Zhang Y F, et al. Effect of hydrothermal pretreatment on surface physicochemical properties of lignite and its flotation response. Powder Technol, 2021, 386: 81 doi: 10.1016/j.powtec.2021.03.024
|
[25] |
Yang Z L, Guo F Y, Xia Y C, et al. Improved floatability of low-rank coal through surface modification by hydrothermal pretreatment. J Clean Prod, 2020, 246: 119025 doi: 10.1016/j.jclepro.2019.119025
|
[26] |
Yang H C, Xing Y W, Sun L J, et al. Kinetics of bubble-particle attachment and detachment at a single-bubble scale. Powder Technol, 2020, 370: 251 doi: 10.1016/j.powtec.2020.05.064
|
[27] |
Sherman H, Nguyen A V, Bruckard W. An analysis of bubble deformation by a sphere relevant to the measurements of bubble-particle contact interaction and detachment forces. Langmuir, 2016, 32(46): 12022 doi: 10.1021/acs.langmuir.6b02985
|
[28] |
Zhang L, Guo J Y, Xie Z X, et al. Micro-mechanism of improving low-rank coal flotation by using carboxylic acid collector: A DFT calculation and MD simulation study. Colloids Surf A Physicochem Eng Aspects, 2021, 622: 126696 doi: 10.1016/j.colsurfa.2021.126696
|
[29] |
Xia Y C, Zhang R, Xing Y W, et al. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel, 2019, 235: 687 doi: 10.1016/j.fuel.2018.07.059
|
[30] |
He M, Zhang W, Cao X Q, et al. Adsorption behavior of surfactant on lignite surface: A comparative experimental and molecular dynamics simulation study. Int J Mol Sci, 2018, 19(2): 437 doi: 10.3390/ijms19020437
|