<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
GUO Qi-feng, CAI Mei-feng, WU Xing-hui, XI Xun, MA Ming-hui, ZHANG Jie. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035[J]. Chinese Journal of Engineering, 2022, 44(4): 476-486. doi: 10.13374/j.issn2095-9389.2021.10.22.004
Citation: GUO Qi-feng, CAI Mei-feng, WU Xing-hui, XI Xun, MA Ming-hui, ZHANG Jie. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035[J]. Chinese Journal of Engineering, 2022, 44(4): 476-486. doi: 10.13374/j.issn2095-9389.2021.10.22.004

Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035

doi: 10.13374/j.issn2095-9389.2021.10.22.004
More Information
  • Corresponding author: E-mail: caimeifeng@ustb.edu.cn
  • Received Date: 2021-10-22
    Available Online: 2022-03-01
  • Publish Date: 2022-04-02
  • Deep mining is an inevitable trend in the exploitation of metal resources owing to their increasing demand. The multifield coupling environment for deep mining, which includes a high in situ stress, high temperature, high hydraulic pressure, and strong disturbances from excavations, pose considerable challenges to mining safety and efficiency. Intelligent or smart mining is a key to revolutionizing the mining industry. Therefore, for promoting the intelligent transformation and upgrading of the mining industry, the study of intelligent mining technologies for deep mines has a considerable strategic significance. Based on the strategic background of mining deep resources, this study investigated future technological strategies for exploiting deep metal resources toward 2035. Global technological trends on deep intelligent mining subject to multifield couplings were analyzed using technological forecasting methods. Hot research topics and advanced technologies related to intelligent deep mining subject to multifield couplings were obtained. Based on experts’ opinions and analyses, key fundamental theories and techniques for intelligent deep mining toward 2035 were proposed. There are three promising mining methods: unconventional deep mining methods without blasting, continuous pastes backfill mining in deep mines, integration of mining, mineral beneficiation and backfill. Advanced technologies can be divided into three types: (1) smart perception of the deep mining environment, (2) intelligent working during deep mining, and (3) intelligent control of mining systems. Type 1 includes intelligent in situ stress measurements, the intelligent identification of rock mass structures, microseismic monitoring and early warning of disasters, intelligent underground space exploration, and intelligent perception of man–machine systems. Type 2 includes intelligent full-section well excavation equipment, intelligent support technology and equipment, intelligent continuous mining technology and equipment, unmanned intelligent mining equipment, and intelligent lifting technology and equipment. Type 3 includes the intelligent control of the filling system, intelligent control of the microclimate in tunnels, flexible data communication on working faces, intelligent scheduling for the entire life cycle of deep mining, intelligent scheduling of the entire mining process, integrated platform for mining management, and big data analysis for deep mining. Technological strategies, key tasks, and a technical roadmap for 2035 were proposed for intelligent deep mining subject to multifield couplings in China, including development targets and demands, fundamental research areas, and key technologies and equipment. Technological development procedures to transform deep mining technologies and improve mining intelligence were presented. Some suggestions were provided in terms of policies, industries, technologies, and talent for intelligent deep mining.

     

  • loading
  • [1]
    蔡美峰, 譚文輝, 任奮華. 金屬礦深部開采創新技術體系戰略研究. 北京: 科學出版社, 2018

    Cai M F, Tan W H, Ren F H. Strategic Research on Innovative Technology System for Deep Mining of Metal Mines. Beijing: Science Press, 2018
    [2]
    謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283

    Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283
    [3]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [4]
    Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
    [5]
    Holliday C O. Good morning engineers: A wake up call. Engineering, 2016, 2(1): 8 doi: 10.1016/J.ENG.2016.01.002
    [6]
    Li X B, Wang S F, Wang S Y. Experimental investigation of the influence of confining stress on hard rock fragmentation using a conical pick. Rock Mech Rock Eng, 2018, 51(1): 255 doi: 10.1007/s00603-017-1309-9
    [7]
    Hallada M R, Walter R F, Seiffert S L. High-power laser rock cutting and drilling in mining operations: Initial feasibility tests. High-Power Laser Ablation III, 2000, 4065: 614
    [8]
    Kosyrev F K, Rodin A V. Laser destruction and treatment of rocks // 9th International Conference on Advanced Laser Technologies (ALT 01). Constanta, 2002: 4762: 166
    [9]
    Zhang F P, Peng J Y, Qiu Z G, et al. Rock-like brittle material fragmentation under coupled static stress and spherical charge explosion. Eng Geol, 2017, 220: 266 doi: 10.1016/j.enggeo.2017.02.016
    [10]
    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [11]
    吳愛祥, 李紅, 楊柳華, 等. 深地開采, 膏體先行. 黃金, 2020, 41(9):51

    Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51
    [12]
    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1

    Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Metal Mine, 2021(1): 1
    [13]
    尹升華, 郝碩, 張海勝, 等. 廢石全尾砂充填料漿的水平衡模型及成本尋優. 中國有色金屬學報, https://kns.cnki.net/kcms/detail/43.1238.tg.20210831.1433.016.html

    Yin S H, Hao S, Zhang H S, et al. Water balance model and cost optimization of waste rock-unclassified pastes slurry. Chin J Nonferrous Met, https://kns.cnki.net/kcms/detail/43.1238.tg.20210831.1433.016.html
    [14]
    孫傳堯, 宋振國. 地下采選一體化系統的研究及應用概況. 礦冶, 2017, 26(1):1 doi: 10.3969/j.issn.1005-7854.2017.01.001

    Sun C Y, Song Z G. Development and application outline of integrated underground mining-processing system. Min Metall, 2017, 26(1): 1 doi: 10.3969/j.issn.1005-7854.2017.01.001
    [15]
    吳愛祥, 王洪江, 尹升華, 等. 深層金屬礦原位流態化開采構想. 礦業科學學報, 2021, 6(3):255

    Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255
    [16]
    Andrault D, Monteux J, Le Bars M, et al. The deep Earth may not be cooling down. Earth Planet Sci Lett, 2016, 443: 195 doi: 10.1016/j.jpgl.2016.03.020
    [17]
    吳星輝, 蔡美峰, 任奮華, 等. 深部礦井高溫巷道熱交換降溫技術探討. 中南大學學報(自然科學版), 2021, 52(3):890 doi: 10.11817/j.issn.1672-7207.2021.03.021

    Wu X H, Cai M F, Ren F H, et al. Heat exchange cooling technology of high temperature roadway in deep mine. J Central South Univ Sci Technol, 2021, 52(3): 890 doi: 10.11817/j.issn.1672-7207.2021.03.021
    [18]
    亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185

    Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185
    [19]
    謝和平, 李存寶, 高明忠, 等. 深部原位巖石力學構想與初步探索. 巖石力學與工程學報, 2021, 40(2):217

    Xie H P, Li C B, Gao M Z, et al. Conceptualization and preliminary research on deep in situ rock mechanics. Chin J Rock Mech Eng, 2021, 40(2): 217
    [20]
    Li Y, Fu S S, Qiao L, et al. Development of twin temperature compensation and high-level biaxial pressurization calibration techniques for CSIRO in-situ stress measurement in depth. Rock Mech Rock Eng, 2019, 52(4): 1115 doi: 10.1007/s00603-018-1618-7
    [21]
    葛云峰, 夏丁, 唐輝明, 等. 基于三維激光掃描技術的巖體結構面智能識別與信息提取. 巖石力學與工程學報, 2017, 36(12):3050

    Ge Y F, Xia D, Tang H M, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning. Chin J Rock Mech Eng, 2017, 36(12): 3050
    [22]
    葛云峰, 鐘鵬, 唐輝明, 等. 基于鉆孔圖像的巖體結構面幾何信息智能測量. 巖土力學, 2019, 40(11):4467

    Ge Y F, Zhong P, Tang H M, et al. Intelligent measurement on geometric information of rock discontinuities based on borehole image. Rock Soil Mech, 2019, 40(11): 4467
    [23]
    袁亮. 煤礦典型動力災害風險判識及監控預警技術研究進展. 煤炭學報, 2020, 45(5):1557

    Yuan L. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines. J China Coal Soc, 2020, 45(5): 1557
    [24]
    李翔, 徐奴文. 微震震源定位研究現狀及展望. 地球物理學進展, 2020, 35(2):598 doi: 10.6038/pg2020DD0105

    Li X, Xu N W. Research developments and prospects on microseismic source location. Prog Geophy, 2020, 35(2): 598 doi: 10.6038/pg2020DD0105
    [25]
    陳安國, 高原. 微震識別方法研究進展. 地球物理學進展, 2019, 34(3):853 doi: 10.6038/pg2019CC0098

    Chen A G, Gao Y. Developments of research on earthquake detection methods. Prog Geophys, 2019, 34(3): 853 doi: 10.6038/pg2019CC0098
    [26]
    李鐵, 蔡美峰, 孫麗娟, 等. 基于震源機制解的礦井采動應力場反演與應用. 巖石力學與工程學報, 2016, 35(9):1747

    Li T, Cai M F, Sun L J, et al. Inversion of mining-induced stress field and its application based on focal mechanism solution. Chin J Rock Mech Eng, 2016, 35(9): 1747
    [27]
    王國法, 趙國瑞, 任懷偉. 智慧煤礦與智能化開采關鍵核心技術分析. 煤炭學報, 2019, 44(1):34

    Wang G F, Zhao G R, Ren H W. Analysis on key technologies of intelligent coal mine and intelligent mining. J China Coal Soc, 2019, 44(1): 34
    [28]
    李杰林, 楊承業, 胡遠, 等. 無人機三維激光掃描技術在地下采空區探測中的應用研究. 金屬礦山, 2020(12):168

    Li J L, Yang C Y, Hu Y, et al. Application research of UAV-lidar in detection of underground goaf. Met Mine, 2020(12): 168
    [29]
    楊必勝, 梁福遜, 黃榮剛. 三維激光掃描點云數據處理研究進展、挑戰與趨勢測繪學報, 2017, 46(10): 1509

    Yang B S, Liang F X, Huang R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing. Acta Geod Cartogr Sin, 2017, 46(10): 1509
    [30]
    張元生, 戰凱, 馬朝陽, 等. 智能礦山技術架構與建設思路. 有色金屬(礦山部分), 2020, 72(3):1

    Zhang Y S, Zhan K, Ma C Y, et al. Technical architecture and construction ideas of intelligent mine. Nonferrous Met Min Sect, 2020, 72(3): 1
    [31]
    王國法, 杜毅博. 煤礦智能化標準體系框架與建設思路. 煤炭科學技術, 2020, 48(1):1

    Wang G F, Du Y B. Coal mine intelligent standard system framework and construction ideas. Coal Sci Technol, 2020, 48(1): 1
    [32]
    梁敏富. 煤礦開采多參量光纖光柵智能感知理論及關鍵技術[學位論文]. 北京: 中國礦業大學(北京), 2019

    Liang F M. Intelligent Sensing Theory and Key Technologies of Multi-Parameter Fiber Bragg Grating in Coal Mining [Dissertation]. Beijing: China University of Mining & Technology Beijing, 2019
    [33]
    謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1

    Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1
    [34]
    龍志陽, 郭孝先. 全斷面掘進機發展和應用. 建井技術, 2017, 38(5):7

    Long Z Y, Guo X X. Development and application of full tunnel boring machine. Mine Constr Technol, 2017, 38(5): 7
    [35]
    譚杰, 劉志強, 宋朝陽, 等. 我國礦山豎井鑿井技術現狀與發展趨勢. 金屬礦山, 2021(5):13

    Tan J, Liu Z Q, Song Z Y, et al. Status and development trend of mine shaft sinking technique in China. Met Mine, 2021(5): 13
    [36]
    李建斌. 我國掘進機研制現狀、問題和展望. 隧道建設(中英文), 2021, 41(6):877

    Li J B. Current status, problems and prospects of research, designng machine in China, and manufacturing of bor. Tunn Constr, 2021, 41(6): 877
    [37]
    李夕兵, 黃麟淇, 周健, 等. 硬巖礦山開采技術回顧與展望. 中國有色金屬學報, 2019, 29(9):1828

    Li X B, Huang L Q, Zhou J, et al. Review and prospect of mining technology in hard rock mines. Chin J Nonferrous Met, 2019, 29(9): 1828
    [38]
    王少鋒, 李夕兵, 宮鳳強, 等. 深部硬巖截割特性與機械化破巖試驗研究中南大學學報(自然科學版), 2021, 52(8): 2772

    Wang S F, Li X B, Gong F Q, et al. Breakage characteristics and mechanized mining experiment in deep hard rock. J Central South Univ Sci Technol, 2021, 52(8): 2772
    [39]
    李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236

    Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236
    [40]
    王國法, 劉峰, 孟祥軍, 等. 煤礦智能化(初級階段)研究與實踐. 煤炭科學技術, 2019, 47(8):1

    Wang G F, Liu F, Meng X J, et al. Research and practice on intelligent coal mine construction (primary stage). Coal Sci Technol, 2019, 47(8): 1
    [41]
    楊健健, 張強, 吳淼, 等. 巷道智能化掘進的自主感知及調控技術研究進展. 煤炭學報, 2020, 45(6):2045

    Yang J J, Zhang Q, Wu M, et al. Research progress of autonomous perception and control technology for intelligent heading. J China Coal Soc, 2020, 45(6): 2045
    [42]
    劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1

    Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1
    [43]
    齊沖沖, 楊星雨, 李桂臣, 等. 新一代人工智能在礦山充填中的應用綜述與展望. 煤炭學報, 2021, 46(2):688

    Qi C C, Yang X Y, Li G C, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling. J China Coal Soc, 2021, 46(2): 688
    [44]
    周福寶, 魏連江, 夏同強, 等. 礦井智能通風原理、關鍵技術及其初步實現. 煤炭學報, 2020, 45(6):2225

    Zhou F B, Wei L J, Xia T Q, et al. Principle, key technology and preliminary realization of mine intelligent ventilation. J China Coal Soc, 2020, 45(6): 2225
    [45]
    張慶華, 姚亞虎, 趙吉玉. 我國礦井通風技術現狀及智能化發展展望. 煤炭科學技術, 2020, 48(2):97

    Zhang Q H, Yao Y H, Zhao J Y. Status of mine ventilation technology in China and prospects for intelligent development. Coal Sci Technol, 2020, 48(2): 97
    [46]
    袁亮, 俞嘯, 丁恩杰, 等. 礦山物聯網人-機-環狀態感知關鍵技術研究. 通信學報, 2020, 41(2):1 doi: 10.11959/j.issn.1000-436x.2020036

    Yuan L, Yu X, Ding E J, et al. Research on key technologies of human-machine-environment states perception in mine Internet of things. J Commun, 2020, 41(2): 1 doi: 10.11959/j.issn.1000-436x.2020036
    [47]
    李曄, 伍宗文. 同步以太網環境下時間同步精度方法研究. 計算機與網絡, 2016, 42(22):72 doi: 10.3969/j.issn.1008-1739.2016.22.070

    Li Y, Wu Z W. Research on time synchronization accuracy method in synchronous Ethernet environment. Comput Netw, 2016, 42(22): 72 doi: 10.3969/j.issn.1008-1739.2016.22.070
    [48]
    冀虎, 張達, 戴銳, 等. 一種適用于地下礦山分布式系統的高精度時間同步系統設計及實現. 中國礦業, 2019, 28(增刊2): 219

    Ji H, Zhang D, Dai R, et al. High precision time synchronization system designed and implemented for underground mine distributed system. China Min Mag, 2019, 28(Suppl 2): 219
    [49]
    王國法, 王虹, 任懷偉, 等. 智慧煤礦2025情景目標和發展路徑. 煤炭學報, 2018, 43(2):295

    Wang G F, Wang H, Ren H W, et al. 2025 scenarios and development path of intelligent coal mine. J China Coal Soc, 2018, 43(2): 295
    [50]
    王李管, 陳鑫. 數字礦山技術進展. 中國有色金屬學報, 2016, 26(8):1693

    Wang L G, Chen X. Advancing technologies for digital mine. Chin J Nonferrous Met, 2016, 26(8): 1693
    [51]
    畢林, 王晉淼. 數字礦山建設目標、任務與方法. 金屬礦山, 2019(6):148

    Bi L, Wang J M. Construction target, task and method of digital mine. Met Mine, 2019(6): 148
    [52]
    丁恩杰, 胡青松. 礦山物聯網頂層設計思路. 物聯網學報, 2018, 2(1):69 doi: 10.11959/j.issn.2096-3750.2018.00043

    Ding E J, Hu Q S. Design ideas of the top layer of the mine Internet of things. Chin J Internet Things, 2018, 2(1): 69 doi: 10.11959/j.issn.2096-3750.2018.00043
    [53]
    “中國工程科技2035發展戰略研究”項目組. 中國工程科技2035發展戰略−綜合報告. 北京: 科學出版社, 2019

    The project team of “Technological strategy research of China Engineering Science and technology towards 2035”. The Development Strategy of China's Engineering Science and Technology for 2035. Beijing: Science Press, 2019
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (4047) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频