Citation: | DING Yun-ji, LI Jia-yi, ZHENG Huan-dong, CUI Yan-jie, LIU Bo, ZHANG Shen-gen. Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts[J]. Chinese Journal of Engineering, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005 |
[1] |
Hülsey M J, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun, 2019, 10: 1330 doi: 10.1038/s41467-019-09188-9
|
[2] |
Yuan Q, Song X, Feng S, et al. An efficient and ultrastable single-Rh-site catalyst on a porous organic polymer for heterogeneous hydrocarboxylation of olefins. Chem Commun (Camb)
|
[3] |
丁云集, 張深根. 廢催化劑中鉑族金屬回收現狀與研究進展. 工程科學學報, 2020, 42(3):257
Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257
|
[4] |
Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644
|
[5] |
Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373
|
[6] |
Hermans I. Methane upgraded by rhodium. Nature, 2017, 551(7682): 575 doi: 10.1038/d41586-017-07437-9
|
[7] |
Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605 doi: 10.1038/nature24640
|
[8] |
Yang L J, Wang H, Rempel G L, et al. Recovery of wilkinson's catalyst from hydrogenated nitrile butadiene rubber latex nanoparticles. Top Catal, 2014, 57(17-20): 1558 doi: 10.1007/s11244-014-0333-1
|
[9] |
Murphy S K, Park J W, Cruz F A, et al. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science, 2015, 347(6217): 56 doi: 10.1126/science.1261232
|
[10] |
Campos C H, Belmar J B, Jeria S E, et al. Rhodium(I) diphenylphosphine complexes supported on porous organic polymers as efficient and recyclable catalysts for alkene hydrogenation. RSC Adv, 2017, 7(6): 3398 doi: 10.1039/C6RA26104C
|
[11] |
Peng Q R, Deng C X, Yang Y, et al. Recycle and recovery of rhodium complexes with water-soluble and amphiphilic phosphines in ionic liquids for hydroformylation of 1-hexene. React Kinetics Catal Lett, 2007, 90(1): 53 doi: 10.1007/s11144-007-4975-x
|
[12] |
潘再富, 劉偉平, 陳家林, 等. 鉑族金屬均相催化劑的研究和應用. 貴金屬, 2009, 30(3):42
Pan Z F, Liu W P, Chen J L, et al. Research and application of platinum metal homogeneous catalysts. Precious Met, 2009, 30(3): 42
|
[13] |
李強. 從低濃度含銠有機廢液中回收銠的研究[學位論文]. 昆明: 昆明貴金屬研究所, 2017
Li Q. Recovery of Rhodium from Low Concentration Rhodium-Containing Organic Waste Liquid [Dissertation]. Kunming: Kunming Institute of Precious Metals, 2017
|
[14] |
蔣凌云, 于海斌, 李晨, 等. 丁辛醇廢銠催化劑焙燒銠回收工藝研究. 無機鹽工業, 2015, 47(4):51
Jiang L Y, Yu H B, Li C, et al. Study on rhodium recovery process by roasting rhodium containing waste catalyst from butyl octanol unit. Inorg Chem Ind, 2015, 47(4): 51
|
[15] |
杜繼山. 鋁碎法回收銠均相催化劑廢液中的銠. 中國化工貿易, 2017, 9(18):130
Du J S. Recovery of rhodium from rhodium containing waste homogeneous catalyst by aluminium crushing. China Chemical Trade, 2017, 9(18): 130
|
[16] |
Dong H G, Zhao J C, Chen J L, et al. Recovery of platinum group metals from spent catalysts: A review. Int J Miner Process, 2015, 145: 108 doi: 10.1016/j.minpro.2015.06.009
|
[17] |
Yang L J, Pan Q M, Rempel G L. Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today, 2013, 207: 153 doi: 10.1016/j.cattod.2012.02.024
|
[18] |
蔣凌云, 李晨, 李繼霞, 等. 丁辛醇廢銠催化劑消解液制備高純三氯化銠研究. 無機鹽工業, 2017, 49(11):76
Jiang L Y, Li C, Li J X, et al. Study on preparing high-purity rhodium chloride by using digestion solution produced in dispelling waste catalyst containing rhodium from butyl octanol unit. Inorg Chem Ind, 2017, 49(11): 76
|
[19] |
Davidson W C, Fieselmann B F. Recovery of Rhodium from Carbonylation Residues: USA Patent, US4341741. 1982-07-27
|
[20] |
吳彥瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究. 環境科學, 2010, 31(4):996
Wu Y Y, Zhou S Q, Qin F H, et al. Removal of humic acids by oxidation and coagulation during Fenton treatment. Environ Sci, 2010, 31(4): 996
|
[21] |
Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater, 2001, 84(1): 57 doi: 10.1016/S0304-3894(01)00202-3
|
[22] |
王永良, 肖力, 付國燕, 等. 響應曲面法優化Na2S-NaOH體系浸出硫酸燒渣中的砷. 工程科學學報, 2018, 40(9):1036
Wang Y L, Xiao L, Fu G Y, et al. Arsenic removal from pyrite cinders in Na2S-NaOH solution with parameters optimized using the response surface methodology. Chin J Eng, 2018, 40(9): 1036
|
[23] |
Bao J W, Liu Z G, Chu M S, et al. Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology. Int J Miner Metall Mater, 2021, 28(12): 1917 doi: 10.1007/s12613-020-2188-8
|
[24] |
Ding Y J, Zheng H D, Li J Y, et al. Recovery of platinum from spent petroleum catalysts: Optimization using response surface methodology. Metals, 2019, 9(3): 354 doi: 10.3390/met9030354
|
[25] |
譚博, 王麗君, 閆柏軍, 等. 微波場下的釩渣氯化動力學. 工程科學學報, 2020, 42(9):1157
Tan B, Wang L J, Yan B J, et al. Kinetics of chlorination of vanadium slag by microwave heating. Chin J Eng, 2020, 42(9): 1157
|