<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
DING Yun-ji, LI Jia-yi, ZHENG Huan-dong, CUI Yan-jie, LIU Bo, ZHANG Shen-gen. Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts[J]. Chinese Journal of Engineering, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005
Citation: DING Yun-ji, LI Jia-yi, ZHENG Huan-dong, CUI Yan-jie, LIU Bo, ZHANG Shen-gen. Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts[J]. Chinese Journal of Engineering, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005

Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts

doi: 10.13374/j.issn2095-9389.2021.10.20.005
More Information
  • Rhodium-containing homogeneous catalysts are the most active catalysts for homogeneous hydrogenation. Spent homogeneous catalysts contain 100–2000 g?t–1 of rhodium (Rh) and plenty of hazardous organic components, making them an essential resource of Rh. The recovery of Rh from homogeneous catalysts has excellent economic and environmental benefits. Based on Rh in the spent homogeneous catalysts, a new technology for green dissociation of the Rh–P chemical bond and complexation leaching of Rh was developed, allowing the green and efficient recovery of Rh. Compared with traditional incineration-fragmentation and acid leaching methods, the proposed technology eliminated issues such as long process times, severe environmental pollution, and a low recovery rate of Rh. In this study, first, the low-melting-point organics were removed using distillation. Then, the Rh+ in the homogeneous rhodium–phosphine complex was oxidized as Rh3+ through H2O2, which reduced the binding of organic ligands to Rh. Meanwhile, the RhCl63? formed by Rh3+ and Cl dissolved into the aqueous solution. The effects of distillation temperature, the concentration of Cl, the dosage of H2O2, the concentration of H+, and reaction time on the recovery efficiency of Rh were studied. The parameters listed above were optimized using response surface methodology. The results showed that the influence of each parameter on the recovery efficiency of Rh was as follows: H2O2 dosage > Cl concentration > reaction time. The recovery efficiency of Rh reached 98.22% after 4 h of distillation at 260 °C, leaching Rh in the mixture solution of 3.0 mol?L–1 Cl, 37% (volume fraction) of the spent homogeneous catalyst dosage of H2O2, 1.0 mol?L–1 H+, and at 90 °C for 4.5 h. Finally, the oxidation–complexation kinetic behavior of Rh was studied using spectrophotometry. The activation energy of the leaching reaction was 39.24 kJ?mol–1, indicating that the rate-controlling step of this process was a surface chemical reaction.

     

  • loading
  • [1]
    Hülsey M J, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun, 2019, 10: 1330 doi: 10.1038/s41467-019-09188-9
    [2]
    Yuan Q, Song X, Feng S, et al. An efficient and ultrastable single-Rh-site catalyst on a porous organic polymer for heterogeneous hydrocarboxylation of olefins. Chem Commun (Camb), 2021, 57(4): 472 doi: 10.1039/D0CC06863B
    [3]
    丁云集, 張深根. 廢催化劑中鉑族金屬回收現狀與研究進展. 工程科學學報, 2020, 42(3):257

    Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257
    [4]
    Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644
    [5]
    Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373
    [6]
    Hermans I. Methane upgraded by rhodium. Nature, 2017, 551(7682): 575 doi: 10.1038/d41586-017-07437-9
    [7]
    Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605 doi: 10.1038/nature24640
    [8]
    Yang L J, Wang H, Rempel G L, et al. Recovery of wilkinson's catalyst from hydrogenated nitrile butadiene rubber latex nanoparticles. Top Catal, 2014, 57(17-20): 1558 doi: 10.1007/s11244-014-0333-1
    [9]
    Murphy S K, Park J W, Cruz F A, et al. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science, 2015, 347(6217): 56 doi: 10.1126/science.1261232
    [10]
    Campos C H, Belmar J B, Jeria S E, et al. Rhodium(I) diphenylphosphine complexes supported on porous organic polymers as efficient and recyclable catalysts for alkene hydrogenation. RSC Adv, 2017, 7(6): 3398 doi: 10.1039/C6RA26104C
    [11]
    Peng Q R, Deng C X, Yang Y, et al. Recycle and recovery of rhodium complexes with water-soluble and amphiphilic phosphines in ionic liquids for hydroformylation of 1-hexene. React Kinetics Catal Lett, 2007, 90(1): 53 doi: 10.1007/s11144-007-4975-x
    [12]
    潘再富, 劉偉平, 陳家林, 等. 鉑族金屬均相催化劑的研究和應用. 貴金屬, 2009, 30(3):42

    Pan Z F, Liu W P, Chen J L, et al. Research and application of platinum metal homogeneous catalysts. Precious Met, 2009, 30(3): 42
    [13]
    李強. 從低濃度含銠有機廢液中回收銠的研究[學位論文]. 昆明: 昆明貴金屬研究所, 2017

    Li Q. Recovery of Rhodium from Low Concentration Rhodium-Containing Organic Waste Liquid [Dissertation]. Kunming: Kunming Institute of Precious Metals, 2017
    [14]
    蔣凌云, 于海斌, 李晨, 等. 丁辛醇廢銠催化劑焙燒銠回收工藝研究. 無機鹽工業, 2015, 47(4):51

    Jiang L Y, Yu H B, Li C, et al. Study on rhodium recovery process by roasting rhodium containing waste catalyst from butyl octanol unit. Inorg Chem Ind, 2015, 47(4): 51
    [15]
    杜繼山. 鋁碎法回收銠均相催化劑廢液中的銠. 中國化工貿易, 2017, 9(18):130

    Du J S. Recovery of rhodium from rhodium containing waste homogeneous catalyst by aluminium crushing. China Chemical Trade, 2017, 9(18): 130
    [16]
    Dong H G, Zhao J C, Chen J L, et al. Recovery of platinum group metals from spent catalysts: A review. Int J Miner Process, 2015, 145: 108 doi: 10.1016/j.minpro.2015.06.009
    [17]
    Yang L J, Pan Q M, Rempel G L. Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today, 2013, 207: 153 doi: 10.1016/j.cattod.2012.02.024
    [18]
    蔣凌云, 李晨, 李繼霞, 等. 丁辛醇廢銠催化劑消解液制備高純三氯化銠研究. 無機鹽工業, 2017, 49(11):76

    Jiang L Y, Li C, Li J X, et al. Study on preparing high-purity rhodium chloride by using digestion solution produced in dispelling waste catalyst containing rhodium from butyl octanol unit. Inorg Chem Ind, 2017, 49(11): 76
    [19]
    Davidson W C, Fieselmann B F. Recovery of Rhodium from Carbonylation Residues: USA Patent, US4341741. 1982-07-27
    [20]
    吳彥瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究. 環境科學, 2010, 31(4):996

    Wu Y Y, Zhou S Q, Qin F H, et al. Removal of humic acids by oxidation and coagulation during Fenton treatment. Environ Sci, 2010, 31(4): 996
    [21]
    Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater, 2001, 84(1): 57 doi: 10.1016/S0304-3894(01)00202-3
    [22]
    王永良, 肖力, 付國燕, 等. 響應曲面法優化Na2S-NaOH體系浸出硫酸燒渣中的砷. 工程科學學報, 2018, 40(9):1036

    Wang Y L, Xiao L, Fu G Y, et al. Arsenic removal from pyrite cinders in Na2S-NaOH solution with parameters optimized using the response surface methodology. Chin J Eng, 2018, 40(9): 1036
    [23]
    Bao J W, Liu Z G, Chu M S, et al. Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology. Int J Miner Metall Mater, 2021, 28(12): 1917 doi: 10.1007/s12613-020-2188-8
    [24]
    Ding Y J, Zheng H D, Li J Y, et al. Recovery of platinum from spent petroleum catalysts: Optimization using response surface methodology. Metals, 2019, 9(3): 354 doi: 10.3390/met9030354
    [25]
    譚博, 王麗君, 閆柏軍, 等. 微波場下的釩渣氯化動力學. 工程科學學報, 2020, 42(9):1157

    Tan B, Wang L J, Yan B J, et al. Kinetics of chlorination of vanadium slag by microwave heating. Chin J Eng, 2020, 42(9): 1157
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (395) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频