Citation: | WANG Hu, MO Yong-da, LOU Hua-fen. Microstructure and properties of a novel Cu–3Ti–0.1Mg–0.05B–0.05 La alloy with high strength and conductivity[J]. Chinese Journal of Engineering, 2023, 45(2): 295-300. doi: 10.13374/j.issn2095-9389.2021.10.20.004 |
[1] |
Gorsse S, Ouvrard B, Gouné M, et al. Microstructural design of new high conductivity-high strength Cu-based alloy. J Alloys Compd, 2015, 633: 42 doi: 10.1016/j.jallcom.2015.01.234
|
[2] |
Laughlin D E, Cahn J W. Spinodal decomposition in age hardening copper-titanium alloys. Acta Metall, 1975, 23(3): 329 doi: 10.1016/0001-6160(75)90125-X
|
[3] |
Semboshi S, Amano S, Fu J, et al. Kinetics and equilibrium of age-induced precipitation in Cu-4 At Pct Ti binary alloy. Metall Mater Trans A, 2017, 48(3): 1501 doi: 10.1007/s11661-016-3949-x
|
[4] |
Li S, Li Z, Xiao Z, et al. Microstructure and property of Cu?2.7Ti?0.15Mg?0.1Ce?0.1Zr alloy treated with a combined aging process. Mater Sci Eng A, 2016, 650: 345
|
[5] |
李榮平, 董亞光, 武明偉, 等. 冷軋態Cu?3Ti合金箔時效析出相變動力學研究. 熱加工工藝, 2020, 49(6):136 doi: 10.14158/j.cnki.1001-3814.20182941
Li R P, Dong Y G, Wu M W, et al. Study on precipitation kinetics of phase transformation of cold rolled Cu?3Ti alloy foil. Hot Work Technol, 2020, 49(6): 136 doi: 10.14158/j.cnki.1001-3814.20182941
|
[6] |
Semboshi S, Kaneno Y, Takasugi T, et al. Effect of composition on the strength and electrical conductivity of Cu?Ti binary alloy wires fabricated by aging and intense drawing. Metall Mater Trans A, 2019, 50(3): 1389 doi: 10.1007/s11661-018-5088-z
|
[7] |
Markandeya R, Nagarjuna S, Sarma D S. Precipitation hardening of Cu?Ti?Cr alloys. Mater Sci Eng A, 2004, 371(1-2): 291 doi: 10.1016/j.msea.2003.12.002
|
[8] |
Koike K, Clarke K D, Clarke A J. Microstructural evolution and mechanical properties of heavily cold-rolled and subsequently annealed Cu?3wt.%Ti alloys with nano-lamellar structure. JOM, 2019, 71(12): 4789
|
[9] |
Suzuki S, Hirabayashi K, Shibata H, et al. Electrical and thermal conductivities in quenched and aged high-purity Cu?Ti alloys. Scr Mater, 2003, 48(4): 431 doi: 10.1016/S1359-6462(02)00441-4
|
[10] |
曹興民, 朱玉斌, 郭富安, 等. Cu−Ti合金的熱變形行為及其組織研究. 稀有金屬材料與工程, 2009, 38(增刊1): 509
Cao X M, Zhu Y B, Guo F A, et al. Hot deformation behavior and microstructure of Cu−Ti alloy. Rare Met Mater Eng, 2009, 38(Suppl 1): 509
|
[11] |
Liu J, Wang X H, Ran Q N, et al. Pre-deformation and aging characteristics of Cu?3Ti?2Mg alloy. Rare Met Mater Eng, 2018, 47(7): 1980 doi: 10.1016/S1875-5372(18)30168-1
|
[12] |
Semboshi S, Kaneno Y, Takasugi T, et al. High strength and high electrical conductivity Cu?Ti alloy wires fabricated by aging and severe drawing. Metall Mater Trans A, 2018, 49(10): 4956 doi: 10.1007/s11661-018-4816-8
|
[13] |
Ramesh S, Nayaka H S, Sahu S, et al. Influence of multiaxial cryoforging on microstructural, mechanical, and corrosion properties of copper-titanium alloy. J Mater Eng Perform, 2019, 28(12): 7629 doi: 10.1007/s11665-019-04454-9
|
[14] |
Szkliniarz A. Formation of microstructure and properties of Cu?3Ti alloy in thermal and thermomechanical processes. Arch Metall Mater, 2017, 62(1): 223 doi: 10.1515/amm-2017-0033
|
[15] |
衛歡, 衛英慧, 侯利鋒. 時效硬化銅鈦合金的相變和應用. 功能材料, 2015, 46(10):10001
Wei H, Wei Y H, Hou L F. The phase transition and applications of age hardening copper-titanium alloys. J Funct Mater, 2015, 46(10): 10001
|