<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
WANG Hu, MO Yong-da, LOU Hua-fen. Microstructure and properties of a novel Cu–3Ti–0.1Mg–0.05B–0.05 La alloy with high strength and conductivity[J]. Chinese Journal of Engineering, 2023, 45(2): 295-300. doi: 10.13374/j.issn2095-9389.2021.10.20.004
Citation: WANG Hu, MO Yong-da, LOU Hua-fen. Microstructure and properties of a novel Cu–3Ti–0.1Mg–0.05B–0.05 La alloy with high strength and conductivity[J]. Chinese Journal of Engineering, 2023, 45(2): 295-300. doi: 10.13374/j.issn2095-9389.2021.10.20.004

Microstructure and properties of a novel Cu–3Ti–0.1Mg–0.05B–0.05 La alloy with high strength and conductivity

doi: 10.13374/j.issn2095-9389.2021.10.20.004
More Information
  • Corresponding author: E-mail: louhuafen@cmari.com
  • Received Date: 2021-10-20
    Available Online: 2021-12-21
  • Publish Date: 2023-02-01
  • The Cu–Ti alloy has similar mechanical properties and electrical conductivity to the Cu–Be alloy. It also exhibits excellent high-temperature properties and stress relaxation resistance. Therefore, it has emerged as a promising material to replace the toxic Cu–Be alloy. With the technological advances, the new generation of connector materials put forward higher requirements for performance, such as strength over 1000 MPa and conductivity over 15%IACS. However, it is difficult to obtain Cu–Ti alloys with such high strength and conductivity. An effective way is to increase the aging temperature or prolong the holding time of the alloy. When the strength of the alloy is reduced, the increase in cost is inevitable. The refining of grains or the regulation of size and distribution of precipitates has proved more effective, which is also true for Cu–Ti alloys. Currently, the refined grain size is still 10–50 μm achieved through a series of common processing methods, including hot rolling, solid solution, and cold rolling. Therefore, the improvement of strength and conductivity is limited for the Cu–Ti alloy. This paper provides a preparation method for synchronously improving the strength and conductivity of the Cu–Ti alloy. The Cu–3Ti–0.1Mg–0.05B–0.05La alloy with an ultra-fine grain structure is obtained via the vacuum casting and cold billet opening. The secondary aging process is used to adjust the size and distribution of the second phase to obtain a Cu–Ti alloy strip with high strength and good conductivity. The results show that the Cu–3Ti–0.1Mg–0.05B–0.05La alloy displays the maximum microhardness of 356 HV and a conductivity of 14.5%IACS after aging at 400 ℃/2 h. The relationship between the second phase precipitation and properties of the Cu–3Ti–0.1Mg–0.05B–0.05La alloy was analyzed using TEM (Transmission electron microscope). The evolution of the second phase is the Ti-rich phase → the granular phase β′-Cu4Ti phase → the granular β′-Cu4Ti phase + lamellar β-Cu4Ti phase → the lamellar β-Cu4Ti phase. The granular β′-Cu4Ti phase is the most important strengthening phase; the lamellar β-Cu4Ti phase can decrease the strength of the alloy but increase the conductivity. The comprehensive properties of Cu–3Ti–0.1Mg–0.05B–0.05La alloy can be further optimized by the secondary aging process. The microhardness and electrical conductivity of the Cu–3Ti–0.1Mg–0.05B–0.05La alloy reach 341 HV and 20.5%IACS after the primary aging at 450 ℃/8 h + 50% cold rolling + secondary aging at 400 ℃/1 h.

     

  • loading
  • [1]
    Gorsse S, Ouvrard B, Gouné M, et al. Microstructural design of new high conductivity-high strength Cu-based alloy. J Alloys Compd, 2015, 633: 42 doi: 10.1016/j.jallcom.2015.01.234
    [2]
    Laughlin D E, Cahn J W. Spinodal decomposition in age hardening copper-titanium alloys. Acta Metall, 1975, 23(3): 329 doi: 10.1016/0001-6160(75)90125-X
    [3]
    Semboshi S, Amano S, Fu J, et al. Kinetics and equilibrium of age-induced precipitation in Cu-4 At Pct Ti binary alloy. Metall Mater Trans A, 2017, 48(3): 1501 doi: 10.1007/s11661-016-3949-x
    [4]
    Li S, Li Z, Xiao Z, et al. Microstructure and property of Cu?2.7Ti?0.15Mg?0.1Ce?0.1Zr alloy treated with a combined aging process. Mater Sci Eng A, 2016, 650: 345
    [5]
    李榮平, 董亞光, 武明偉, 等. 冷軋態Cu?3Ti合金箔時效析出相變動力學研究. 熱加工工藝, 2020, 49(6):136 doi: 10.14158/j.cnki.1001-3814.20182941

    Li R P, Dong Y G, Wu M W, et al. Study on precipitation kinetics of phase transformation of cold rolled Cu?3Ti alloy foil. Hot Work Technol, 2020, 49(6): 136 doi: 10.14158/j.cnki.1001-3814.20182941
    [6]
    Semboshi S, Kaneno Y, Takasugi T, et al. Effect of composition on the strength and electrical conductivity of Cu?Ti binary alloy wires fabricated by aging and intense drawing. Metall Mater Trans A, 2019, 50(3): 1389 doi: 10.1007/s11661-018-5088-z
    [7]
    Markandeya R, Nagarjuna S, Sarma D S. Precipitation hardening of Cu?Ti?Cr alloys. Mater Sci Eng A, 2004, 371(1-2): 291 doi: 10.1016/j.msea.2003.12.002
    [8]
    Koike K, Clarke K D, Clarke A J. Microstructural evolution and mechanical properties of heavily cold-rolled and subsequently annealed Cu?3wt.%Ti alloys with nano-lamellar structure. JOM, 2019, 71(12): 4789
    [9]
    Suzuki S, Hirabayashi K, Shibata H, et al. Electrical and thermal conductivities in quenched and aged high-purity Cu?Ti alloys. Scr Mater, 2003, 48(4): 431 doi: 10.1016/S1359-6462(02)00441-4
    [10]
    曹興民, 朱玉斌, 郭富安, 等. Cu−Ti合金的熱變形行為及其組織研究. 稀有金屬材料與工程, 2009, 38(增刊1): 509

    Cao X M, Zhu Y B, Guo F A, et al. Hot deformation behavior and microstructure of Cu−Ti alloy. Rare Met Mater Eng, 2009, 38(Suppl 1): 509
    [11]
    Liu J, Wang X H, Ran Q N, et al. Pre-deformation and aging characteristics of Cu?3Ti?2Mg alloy. Rare Met Mater Eng, 2018, 47(7): 1980 doi: 10.1016/S1875-5372(18)30168-1
    [12]
    Semboshi S, Kaneno Y, Takasugi T, et al. High strength and high electrical conductivity Cu?Ti alloy wires fabricated by aging and severe drawing. Metall Mater Trans A, 2018, 49(10): 4956 doi: 10.1007/s11661-018-4816-8
    [13]
    Ramesh S, Nayaka H S, Sahu S, et al. Influence of multiaxial cryoforging on microstructural, mechanical, and corrosion properties of copper-titanium alloy. J Mater Eng Perform, 2019, 28(12): 7629 doi: 10.1007/s11665-019-04454-9
    [14]
    Szkliniarz A. Formation of microstructure and properties of Cu?3Ti alloy in thermal and thermomechanical processes. Arch Metall Mater, 2017, 62(1): 223 doi: 10.1515/amm-2017-0033
    [15]
    衛歡, 衛英慧, 侯利鋒. 時效硬化銅鈦合金的相變和應用. 功能材料, 2015, 46(10):10001

    Wei H, Wei Y H, Hou L F. The phase transition and applications of age hardening copper-titanium alloys. J Funct Mater, 2015, 46(10): 10001
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views (431) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频