<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LI Shi-jie, WANG Ming-yong, SONG Wei-li, ZUO Hai-bin, JIAO Shu-qiang. Electrochemical graphitization in the molten salts: Progress and prospects[J]. Chinese Journal of Engineering, 2022, 44(4): 546-560. doi: 10.13374/j.issn2095-9389.2021.10.20.002
Citation: LI Shi-jie, WANG Ming-yong, SONG Wei-li, ZUO Hai-bin, JIAO Shu-qiang. Electrochemical graphitization in the molten salts: Progress and prospects[J]. Chinese Journal of Engineering, 2022, 44(4): 546-560. doi: 10.13374/j.issn2095-9389.2021.10.20.002

Electrochemical graphitization in the molten salts: Progress and prospects

doi: 10.13374/j.issn2095-9389.2021.10.20.002
More Information
  • Corresponding author: SONG Wei-li, E-mail: weilis@bit.edu.cn; JIAO Shu-qiang, E-mail: sjiao@ustb.edu.cn
  • Received Date: 2021-10-20
    Available Online: 2022-01-17
  • Publish Date: 2022-04-02
  • In 2020, the Chinese government proposed the goals of “peaking carbon dioxide emissions” in 2030 and reaching “carbon neutrality” in 2060, with the expectation of enhancing the optimization of industrial structure and energy structures as well as promoting the development of control technologies and new energy technologies for pollution prevention. Carbon emissions lead to global warming, glacier melting, sea level rising, and other unexpected climate changes. It is highly significant to develop sustainable technologies for treating or converting carbon dioxide and low value-added solid carbon wastes and other carbon pollutants to achieve solid-state valuable carbon products. Carbon pollutants are also regarded as secondary carbon resources, which provide sufficient raw materials for developing carbon materials. Graphitization alters the chemical structure of carbonaceous materials. However, there are still some critical issues in the traditional graphitization processes, such as high processing temperature, insufficient graphitization, and emission of greenhouse gas. In recent years, an efficient and environmentally friendly method for electrochemical graphitization in molten salts has been established, which can be used to directly convert carbon pollutants into high graphitized products. In this review, there are three main topics: (1) process flow, (2) structure characteristics, (3) conversion mechanism of electrochemical graphitization. The use of carbon nanomaterials in secondary batteries such as lithium-ion batteries and aluminum-ion batteries has been discussed for a potential application. As a result, the efficient strategies of transforming and utilizing abundant secondary carbon resources to achieve the applications have also been analyzed. Finally, the ultimate goals for bridging the gap between molten salt electrochemical graphitization and engineering of graphitized products have been identified. Further efforts should be made to develop large-scale electrolytic technology with low energy consumption, build advanced in-situ characterization technology and quantitative analysis method for high-temperature molten salt electrochemistry, and understand the mechanism of electrochemical graphitization at the microscale.

     

  • loading
  • [1]
    Poizot P, Dolhem F. Clean energy new deal for a sustainable world: From non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci, 2011, 4(6): 2003 doi: 10.1039/c0ee00731e
    [2]
    Weng W, Tang L Z, Xiao W. Capture and electro-splitting of CO2 in molten salts. J Energy Chem, 2019, 28: 128 doi: 10.1016/j.jechem.2018.06.012
    [3]
    楊永清, 齊暑華, 張翼, 等. 石墨及其改性產物研究進展. 材料導報, 2011, 25(15):53

    Yang Y Q, Qi S H, Zhang Y, et al. Development of graphite and its derivatives. Mater Rev, 2011, 25(15): 53
    [4]
    Cameán I, Lavela P, Tirado J L, et al. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89(5): 986 doi: 10.1016/j.fuel.2009.06.034
    [5]
    Fan C L, He H, Zhang K H, et al. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity. Electrochimica Acta, 2012, 75: 311 doi: 10.1016/j.electacta.2012.05.010
    [6]
    Kim T, Lee J, Lee K H. Full graphitization of amorphous carbon by microwave heating. RSC Adv, 2016, 6(29): 24667 doi: 10.1039/C6RA01989G
    [7]
    Hwang J, Shields V B, Thomas C I, et al. Epitaxial growth of graphitic carbon on C-face SiC and sapphire by chemical vapor deposition (CVD). J Cryst Growth, 2010, 312(21): 3219 doi: 10.1016/j.jcrysgro.2010.07.046
    [8]
    Hulicova-Jurcakova D, Li X, Zhu Z H, et al. Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electrochemical performances in supercapacitors. Energy Fuels, 2008, 22(6): 4139 doi: 10.1021/ef8004306
    [9]
    Sevilla M, Fuertes A B. Catalytic graphitization of templated mesoporous carbons. Carbon, 2006, 44(3): 468 doi: 10.1016/j.carbon.2005.08.019
    [10]
    Zhai D Y, Du H D, Li B H, et al. Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon, 2011, 49(2): 725 doi: 10.1016/j.carbon.2010.09.057
    [11]
    Peng J J, Chen N Q, He R, et al. Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method. Angew Chem Int Ed, 2017, 56(7): 1751 doi: 10.1002/anie.201609565
    [12]
    Jin X B, He R, Dai S. Electrochemical graphitization: An efficient conversion of amorphous carbons to nanostructured graphites. Chem Eur J, 2017, 23(48): 11455 doi: 10.1002/chem.201701620
    [13]
    Ragan S, Marsh H. Science and technology of graphite manufacture. J Mater Sci, 1983, 18(11): 3161 doi: 10.1007/BF00544139
    [14]
    Endo M, Kim Y A, Hayashi T, et al. Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon, 2003, 41(10): 1941 doi: 10.1016/S0008-6223(03)00171-4
    [15]
    Ramos A, Cameán I, García A B. Graphitization thermal treatment of carbon nanofibers. Carbon, 2013, 59: 2 doi: 10.1016/j.carbon.2013.03.031
    [16]
    Tu J G, Wang J X, Li S J, et al. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale, 2019, 11(26): 12537 doi: 10.1039/C9NR03112J
    [17]
    李曉琳. 石油焦熔鹽電解石墨化基礎研究[學位論文]. 北京: 北京科技大學, 2021

    Li X L. Basic Research on Electrolytic Graphitization of Petroleum Coke in Molten Salt [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
    [18]
    Zhu Z L, Zuo H B, Li S J, et al. A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage. J Mater Chem A, 2019, 7(13): 7533 doi: 10.1039/C8TA12412D
    [19]
    Zhu Z L, Zuo H B, Li S J, et al. Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries. Ionics, 2020, 26(7): 3351 doi: 10.1007/s11581-020-03464-1
    [20]
    Song W L, Li S J, Zhang G H, et al. Cellulose-derived flake graphite as positive electrodes for Al-ion batteries. Sustainable Energy Fuels, 2019, 3(12): 3561 doi: 10.1039/C9SE00656G
    [21]
    Hu L W, Song Y, Ge J B, et al. Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts. J Mater Chem A, 2015, 3(42): 21211 doi: 10.1039/C5TA05127D
    [22]
    Deng B W, Mao X H, Xiao W, et al. Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO2. J Mater Chem A, 2017, 5(25): 12822 doi: 10.1039/C7TA03606J
    [23]
    Gao M X, Deng B W, Chen Z G, et al. Cathodic reaction kinetics for CO2 capture and utilization in molten carbonates at mild temperatures. Electrochem Commun, 2018, 88: 79 doi: 10.1016/j.elecom.2018.02.003
    [24]
    Wu H J, Li Z D, Ji D Q, et al. Effect of molten carbonate composition on the generation of carbon material. RSC Adv, 2017, 7(14): 8467 doi: 10.1039/C6RA25229J
    [25]
    Hu L W, Song Y, Ge J B, et al. Electrochemical deposition of carbon nanotubes from CO2 in CaCl2–NaCl-based melts. J Mater Chem A, 2017, 5(13): 6219 doi: 10.1039/C7TA00258K
    [26]
    Ingram M D, Baron B, Janz G J. The electrolytic deposition of carbon from fused carbonates. Electrochimica Acta, 1966, 11(11): 1629 doi: 10.1016/0013-4686(66)80076-2
    [27]
    Borucka A. Evidence for the existence of stable CO2 = ion and response time of gas electrodes in molten alkali carbonates. J Electrochem Soc, 1977, 124(7): 972 doi: 10.1149/1.2133511
    [28]
    Deanhardt M L, Stern K H, Kende A. Thermal decomposition and reduction of carbonate ion in fluoride melts. J Electrochem Soc, 1986, 133(6): 1148 doi: 10.1149/1.2108802
    [29]
    Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5(7): 5463 doi: 10.1021/nn2006249
    [30]
    Li X F, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J Power Sources, 2012, 197: 238 doi: 10.1016/j.jpowsour.2011.09.024
    [31]
    Du Q K, Wu Q X, Wang H X, et al. Carbon dot-modified silicon nanoparticles for lithium-ion batteries. Int J Miner Metall Mater, 2021, 28(10): 1603 doi: 10.1007/s12613-020-2247-1
    [32]
    Lu S J, Liu Y, He Z J, et al. Synthesis and properties of single-crystal Ni-rich cathode materials in Li-ion batteries. Trans Nonferrous Met Soc China, 2021, 31(4): 1074 doi: 10.1016/S1003-6326(21)65562-0
    [33]
    Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ion batteries. Carbon, 2000, 38(2): 183 doi: 10.1016/S0008-6223(99)00141-4
    [34]
    Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev, 2018, 118(23): 11433 doi: 10.1021/acs.chemrev.8b00422
    [35]
    Huang X D, Liu Y, Zhang H W, et al. Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. J Mater Chem A, 2017, 5(36): 19416 doi: 10.1039/C7TA04477A
    [36]
    Chen H, Xu H Y, Wang S Y, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv, 2017, 3(12): eaao7233 doi: 10.1126/sciadv.aao7233
    [37]
    Jiao H D, Qu Z L, Jiao S Q, et al. Quantificational 4D visualization of industrial electrodeposition. Adv Sci (Weinh), 2021, 8(24): e2101373 doi: 10.1002/advs.202101373
    [38]
    Jiao H D, Qu Z L, Jiao S Q, et al. 4D X-ray computer microtomography for high-temperature electrochemistry. Sci Adv, 2022: abm5678
    [39]
    Hosoya Y, Terai T, Yoneoka T, et al. Compatibility of structural materials with molten chloride mixture at high temperature. J Nucl Mater, 1997, 248: 348 doi: 10.1016/S0022-3115(97)00175-X
    [40]
    Indacochea E, Smith J, Litko K, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides. Oxid Met, 2001, 55(1): 1
    [41]
    Indacochea J E, Smith J L, Litko K R, et al. Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions. J Mater Res, 1999, 14(5): 1990 doi: 10.1557/JMR.1999.0268
    [42]
    Shankar A R, Mudali U K, Sole R, et al. Plasma-sprayed yttria-stabilized zirconia coatings on type 316L stainless steel for pyrochemical reprocessing plant. J Nucl Mater, 2008, 372(2-3): 226 doi: 10.1016/j.jnucmat.2007.03.175
    [43]
    Edeleanu C, Littlewood R. Thermodynamics of corrosion in fused chlorides. Electrochimica Acta, 1960, 3(3): 195 doi: 10.1016/0013-4686(60)85003-7
    [44]
    Feng X K, Melendres C A. Anodic corrosion and passivation behavior of some metals in molten LiCl?KCl containing oxide ions. J Electrochem Soc, 1982, 129(6): 1245 doi: 10.1149/1.2124095
    [45]
    Ambrosek J W. Molten Chloride Salts for Heat Transfer in Nuclear Systems [Dissertation]. Madison: University of Wisconsin, 2011
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article views (789) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频