Citation: | LI Shi-jie, WANG Ming-yong, SONG Wei-li, ZUO Hai-bin, JIAO Shu-qiang. Electrochemical graphitization in the molten salts: Progress and prospects[J]. Chinese Journal of Engineering, 2022, 44(4): 546-560. doi: 10.13374/j.issn2095-9389.2021.10.20.002 |
[1] |
Poizot P, Dolhem F. Clean energy new deal for a sustainable world: From non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci, 2011, 4(6): 2003 doi: 10.1039/c0ee00731e
|
[2] |
Weng W, Tang L Z, Xiao W. Capture and electro-splitting of CO2 in molten salts. J Energy Chem, 2019, 28: 128 doi: 10.1016/j.jechem.2018.06.012
|
[3] |
楊永清, 齊暑華, 張翼, 等. 石墨及其改性產物研究進展. 材料導報, 2011, 25(15):53
Yang Y Q, Qi S H, Zhang Y, et al. Development of graphite and its derivatives. Mater Rev, 2011, 25(15): 53
|
[4] |
Cameán I, Lavela P, Tirado J L, et al. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89(5): 986 doi: 10.1016/j.fuel.2009.06.034
|
[5] |
Fan C L, He H, Zhang K H, et al. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity. Electrochimica Acta, 2012, 75: 311 doi: 10.1016/j.electacta.2012.05.010
|
[6] |
Kim T, Lee J, Lee K H. Full graphitization of amorphous carbon by microwave heating. RSC Adv, 2016, 6(29): 24667 doi: 10.1039/C6RA01989G
|
[7] |
Hwang J, Shields V B, Thomas C I, et al. Epitaxial growth of graphitic carbon on C-face SiC and sapphire by chemical vapor deposition (CVD). J Cryst Growth, 2010, 312(21): 3219 doi: 10.1016/j.jcrysgro.2010.07.046
|
[8] |
Hulicova-Jurcakova D, Li X, Zhu Z H, et al. Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electrochemical performances in supercapacitors. Energy Fuels, 2008, 22(6): 4139 doi: 10.1021/ef8004306
|
[9] |
Sevilla M, Fuertes A B. Catalytic graphitization of templated mesoporous carbons. Carbon, 2006, 44(3): 468 doi: 10.1016/j.carbon.2005.08.019
|
[10] |
Zhai D Y, Du H D, Li B H, et al. Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon, 2011, 49(2): 725 doi: 10.1016/j.carbon.2010.09.057
|
[11] |
Peng J J, Chen N Q, He R, et al. Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method. Angew Chem Int Ed, 2017, 56(7): 1751 doi: 10.1002/anie.201609565
|
[12] |
Jin X B, He R, Dai S. Electrochemical graphitization: An efficient conversion of amorphous carbons to nanostructured graphites. Chem Eur J, 2017, 23(48): 11455 doi: 10.1002/chem.201701620
|
[13] |
Ragan S, Marsh H. Science and technology of graphite manufacture. J Mater Sci, 1983, 18(11): 3161 doi: 10.1007/BF00544139
|
[14] |
Endo M, Kim Y A, Hayashi T, et al. Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment. Carbon, 2003, 41(10): 1941 doi: 10.1016/S0008-6223(03)00171-4
|
[15] |
Ramos A, Cameán I, García A B. Graphitization thermal treatment of carbon nanofibers. Carbon, 2013, 59: 2 doi: 10.1016/j.carbon.2013.03.031
|
[16] |
Tu J G, Wang J X, Li S J, et al. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale, 2019, 11(26): 12537 doi: 10.1039/C9NR03112J
|
[17] |
李曉琳. 石油焦熔鹽電解石墨化基礎研究[學位論文]. 北京: 北京科技大學, 2021
Li X L. Basic Research on Electrolytic Graphitization of Petroleum Coke in Molten Salt [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
|
[18] |
Zhu Z L, Zuo H B, Li S J, et al. A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage. J Mater Chem A, 2019, 7(13): 7533 doi: 10.1039/C8TA12412D
|
[19] |
Zhu Z L, Zuo H B, Li S J, et al. Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries. Ionics, 2020, 26(7): 3351 doi: 10.1007/s11581-020-03464-1
|
[20] |
Song W L, Li S J, Zhang G H, et al. Cellulose-derived flake graphite as positive electrodes for Al-ion batteries. Sustainable Energy Fuels, 2019, 3(12): 3561 doi: 10.1039/C9SE00656G
|
[21] |
Hu L W, Song Y, Ge J B, et al. Capture and electrochemical conversion of CO2 to ultrathin graphite sheets in CaCl2-based melts. J Mater Chem A, 2015, 3(42): 21211 doi: 10.1039/C5TA05127D
|
[22] |
Deng B W, Mao X H, Xiao W, et al. Microbubble effect-assisted electrolytic synthesis of hollow carbon spheres from CO2. J Mater Chem A, 2017, 5(25): 12822 doi: 10.1039/C7TA03606J
|
[23] |
Gao M X, Deng B W, Chen Z G, et al. Cathodic reaction kinetics for CO2 capture and utilization in molten carbonates at mild temperatures. Electrochem Commun, 2018, 88: 79 doi: 10.1016/j.elecom.2018.02.003
|
[24] |
Wu H J, Li Z D, Ji D Q, et al. Effect of molten carbonate composition on the generation of carbon material. RSC Adv, 2017, 7(14): 8467 doi: 10.1039/C6RA25229J
|
[25] |
Hu L W, Song Y, Ge J B, et al. Electrochemical deposition of carbon nanotubes from CO2 in CaCl2–NaCl-based melts. J Mater Chem A, 2017, 5(13): 6219 doi: 10.1039/C7TA00258K
|
[26] |
Ingram M D, Baron B, Janz G J. The electrolytic deposition of carbon from fused carbonates. Electrochimica Acta, 1966, 11(11): 1629 doi: 10.1016/0013-4686(66)80076-2
|
[27] |
Borucka A. Evidence for the existence of stable CO2 = ion and response time of gas electrodes in molten alkali carbonates. J Electrochem Soc, 1977, 124(7): 972 doi: 10.1149/1.2133511
|
[28] |
Deanhardt M L, Stern K H, Kende A. Thermal decomposition and reduction of carbonate ion in fluoride melts. J Electrochem Soc, 1986, 133(6): 1148 doi: 10.1149/1.2108802
|
[29] |
Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5(7): 5463 doi: 10.1021/nn2006249
|
[30] |
Li X F, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J Power Sources, 2012, 197: 238 doi: 10.1016/j.jpowsour.2011.09.024
|
[31] |
Du Q K, Wu Q X, Wang H X, et al. Carbon dot-modified silicon nanoparticles for lithium-ion batteries. Int J Miner Metall Mater, 2021, 28(10): 1603 doi: 10.1007/s12613-020-2247-1
|
[32] |
Lu S J, Liu Y, He Z J, et al. Synthesis and properties of single-crystal Ni-rich cathode materials in Li-ion batteries. Trans Nonferrous Met Soc China, 2021, 31(4): 1074 doi: 10.1016/S1003-6326(21)65562-0
|
[33] |
Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ion batteries. Carbon, 2000, 38(2): 183 doi: 10.1016/S0008-6223(99)00141-4
|
[34] |
Winter M, Barnett B, Xu K. Before Li ion batteries. Chem Rev, 2018, 118(23): 11433 doi: 10.1021/acs.chemrev.8b00422
|
[35] |
Huang X D, Liu Y, Zhang H W, et al. Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. J Mater Chem A, 2017, 5(36): 19416 doi: 10.1039/C7TA04477A
|
[36] |
Chen H, Xu H Y, Wang S Y, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv, 2017, 3(12): eaao7233 doi: 10.1126/sciadv.aao7233
|
[37] |
Jiao H D, Qu Z L, Jiao S Q, et al. Quantificational 4D visualization of industrial electrodeposition. Adv Sci (Weinh)
|
[38] |
Jiao H D, Qu Z L, Jiao S Q, et al. 4D X-ray computer microtomography for high-temperature electrochemistry. Sci Adv, 2022: abm5678
|
[39] |
Hosoya Y, Terai T, Yoneoka T, et al. Compatibility of structural materials with molten chloride mixture at high temperature. J Nucl Mater, 1997, 248: 348 doi: 10.1016/S0022-3115(97)00175-X
|
[40] |
Indacochea E, Smith J, Litko K, et al. High-temperature oxidation and corrosion of structural materials in molten chlorides. Oxid Met, 2001, 55(1): 1
|
[41] |
Indacochea J E, Smith J L, Litko K R, et al. Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions. J Mater Res, 1999, 14(5): 1990 doi: 10.1557/JMR.1999.0268
|
[42] |
Shankar A R, Mudali U K, Sole R, et al. Plasma-sprayed yttria-stabilized zirconia coatings on type 316L stainless steel for pyrochemical reprocessing plant. J Nucl Mater, 2008, 372(2-3): 226 doi: 10.1016/j.jnucmat.2007.03.175
|
[43] |
Edeleanu C, Littlewood R. Thermodynamics of corrosion in fused chlorides. Electrochimica Acta, 1960, 3(3): 195 doi: 10.1016/0013-4686(60)85003-7
|
[44] |
Feng X K, Melendres C A. Anodic corrosion and passivation behavior of some metals in molten LiCl?KCl containing oxide ions. J Electrochem Soc, 1982, 129(6): 1245 doi: 10.1149/1.2124095
|
[45] |
Ambrosek J W. Molten Chloride Salts for Heat Transfer in Nuclear Systems [Dissertation]. Madison: University of Wisconsin, 2011
|