Citation: | HU Wen-Tao, TIAN Kai, LI Jia-hong, LIANG Si-yi, SONG Chao, LI Jie, LIU Xin-wei, WANG Hua-Jun. Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation[J]. Chinese Journal of Engineering, 2022, 44(6): 993-1001. doi: 10.13374/j.issn2095-9389.2021.10.01.003 |
[1] |
Chen W M, Wu S M, Lei Y L, et al. China's water footprint by Province, and inter-provincial transfer of virtual water. Ecol Indic, 2017, 74: 321 doi: 10.1016/j.ecolind.2016.11.037
|
[2] |
Zhou S J, Deng R J, Hursthouse A. Risk assessment of potentially toxic elements pollution from mineral processing steps at xikuangshan antimony plant, Hunan, China. Processes, 2019, 8(1): 29 doi: 10.3390/pr8010029
|
[3] |
Yang X L, Bu X N, Xie G Y, et al. A comparative study on the influence of mono, di, and trivalent cations on the chalcopyrite and pyrite flotation. J Mater Res Technol, 2021, 11: 1112 doi: 10.1016/j.jmrt.2021.01.086
|
[4] |
Bicak O, Ozturk Y, Ozdemir E, et al. Modelling effects of dissolved ions in process water on flotation performance. Miner Eng, 2018, 128: 84 doi: 10.1016/j.mineng.2018.08.031
|
[5] |
Castillo C, Ihle C F, Jeldres R I. Chemometric optimisation of a copper sulphide tailings flocculation process in the presence of clays. Minerals, 2019, 9(10): 582 doi: 10.3390/min9100582
|
[6] |
Chen Y F, Fan R, An D F, et al. Water softening by induced crystallization in fluidized bed. J Environ Sci, 2016, 50: 109 doi: 10.1016/j.jes.2016.08.014
|
[7] |
Zubkova O, Alexeev A, Polyanskiy A, et al. Complex processing of saponite waste from a diamond-mining enterprise. Appl Sci, 2021, 11(14): 6615 doi: 10.3390/app11146615
|
[8] |
Liang G Q, Zhao Q, Liu B, et al. Treatment and reuse of process water with high suspended solids in low-grade iron ore dressing. J Clean Prod, 2021, 278: 123493 doi: 10.1016/j.jclepro.2020.123493
|
[9] |
徐帥, 周興龍, 劉肖楚, 等. 濃密機發展歷程、分類及其高效化改進研究現狀. 金屬礦山, 2021(5):167
Xu S, Zhou X L, Liu X C, et al. Development process, classification and high efficiency modification status of the thickener. Met Mine, 2021(5): 167
|
[10] |
楊保東, 謝紀元, 李鵬. 高效濃密機機理研究. 有色金屬(選礦部分), 2011(5):38
Yang B D, Xie J Y, Li P. Research on mechanism of high efficiency thickener. Nonferrous Met (Miner Process Sect)
|
[11] |
陳慶來, 李從軍, 楊勇. ?53 m中心傳動自動提耙高效濃縮機技術特點分析. 現代礦業, 2009, 25(6):130 doi: 10.3969/j.issn.1674-6082.2009.06.048
Chen Q L, Li C J, Yang Y. Analysis on technical characteristics of ?53 m center drive automatic rake lifting high efficiency thickener. Mod Min, 2009, 25(6): 130 doi: 10.3969/j.issn.1674-6082.2009.06.048
|
[12] |
謝丹丹, 童雄, 謝賢, 等. 濃密機在選礦中的應用現狀及研究進展. 礦產保護與利用, 2015(2):73
Xie D D, Tong X, Xie X, et al. The application and development of thickener in mineral processing technology. Conserv Util Miner Resour, 2015(2): 73
|
[13] |
徐衍睿, 班曉娟, 王笑琨, 等. 面向視網膜脫離手術的硅油填充模擬. 工程科學學報, 2021, 43(9):1233
Xu Y R, Ban X J, Wang X K, et al. Simulations of silicone oil filling for use in retinal detachment surgery. Chin J Eng, 2021, 43(9): 1233
|
[14] |
Cui Y, Ravnik J, Steinmann P, et al. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Water Res, 2019, 158: 159 doi: 10.1016/j.watres.2019.04.017
|
[15] |
Gao H W, Stenstrom M K. Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environ Res, 2020, 92(6): 796 doi: 10.1002/wer.1279
|
[16] |
Shah M T, Parmar H B, Rhyne L D, et al. A novel settling tank for produced water treatment: CFD simulations and PIV experiments. J Petroleum Sci Eng, 2019, 182: 106352 doi: 10.1016/j.petrol.2019.106352
|
[17] |
姚娟娟, 宋莉莉, 劉存. 斜板沉淀池前配水渠的數值模擬及結構優化. 水資源與水工程學報, 2020, 31(5):120
Yao J J, Song L L, Liu C. Numerical simulation and structural optimization of water distribution channel between the flocculation tank and sedimentation tank with inclined plate settler. J Water Resour Water Eng, 2020, 31(5): 120
|
[18] |
魏文禮, 胡嘉冀, 王長洲, 等. 輻流式沉淀池出口位置優化數值模擬研究. 應用力學學報, 2021, 38(2):670
Wei W L, Hu J J, Wang C Z, et al. Numerical simulation for the influence of outlet location on the hydraulic characteristic in a radical settling tank. Chin J Appl Mech, 2021, 38(2): 670
|
[19] |
蘭斌, 徐驥, 劉志成, 等. 連續操作密相流化床顆粒停留時間分布特性模擬放大研究. 化工學報, 2021, 72(1):521
Lan B, Xu J, Liu Z C, et al. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds. Ciesc J, 2021, 72(1): 521
|
[20] |
劉玉玲, 張沛, 魏文禮, 等. 輻流式沉淀池液固兩相流力學特性三維數值模擬. 水資源與水工程學報, 2013, 24(4):25
Liu Y L, Zhang P, Wei W L, et al. Numerical simulation of mechanical property of solid-liquid two-phase turbulent flow in a secondary sedimentation tank of radial flow. J Water Resour Water Eng, 2013, 24(4): 25
|
[21] |
Yu Q H, Mei Z Y, Bai M Q, et al. Cooling performance improvement of impingement hybrid synthetic jets in a confined space with the aid of a fluid diode. Appl Therm Eng, 2019, 157: 113749 doi: 10.1016/j.applthermaleng.2019.113749
|
[22] |
Behrangi F, Banihashemi M A, Namin M M, et al. A new approach to solve mixture multi-phase flow model using time splitting projection method. Prog Comput Fluid Dyn Int J, 2019, 19(3): 160 doi: 10.1504/PCFD.2019.099595
|
[23] |
Hnaien N, Marzouk S, Aissia H B, et al. Numerical investigation of velocity ratio effect in combined wall and offset jet flows. J Hydrodyn, 2018, 30(6): 1105 doi: 10.1007/s42241-018-0136-0
|
[24] |
Siswantara A I, Budiarso, Darmawan S. Investigation of inverse-turbulent-Prandtl number with four RNG k?ε turbulence models on compressor discharge pipe of bioenergy micro gas turbine. Appl Mech Mater, 2016, 819: 392 doi: 10.4028/www.scientific.net/AMM.819.392
|
[25] |
Tarpagkou R, Pantokratoras A. The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technol, 2014, 268: 139 doi: 10.1016/j.powtec.2014.08.030
|
[26] |
譚立新, 唐敏, 徐長賀. 斜板對豎流式沉淀池影響的三維數值模擬. 水力發電學報, 2018, 37(10):86 doi: 10.11660/slfdxb.20181010
Tan L X, Tang M, Xu C H. Three-dimensional numerical simulations of the effects of slanting plates in vertical flow desilting tank. J Hydroelectr Eng, 2018, 37(10): 86 doi: 10.11660/slfdxb.20181010
|
[27] |
Shahrokhi M, Rostami F, Md Said M A, et al. The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Appl Math Model, 2012, 36(8): 3725 doi: 10.1016/j.apm.2011.11.001
|
[28] |
Goula A M, Kostoglou M, Karapantsios T D, et al. A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle. Chem Eng J, 2008, 140(1-3): 110 doi: 10.1016/j.cej.2007.09.022
|