Citation: | GUO Shi-quan, SUN Ya-xin, LI Cong-ju. Research progress in anode transition metal-based catalysts for direct methanol fuel cell[J]. Chinese Journal of Engineering, 2022, 44(4): 625-640. doi: 10.13374/j.issn2095-9389.2021.09.30.005 |
[1] |
Kimiaie N, Wedlich K, Hehemann M, et al. Results of a 20000 h lifetime test of a 7 kW direct methanol fuel cell (DMFC) hybrid system — degradation of the DMFC stack and the energy storage. Energy Environ Sci, 2014, 7(9): 3013 doi: 10.1039/C4EE00749B
|
[2] |
Wang D Y, Chou H L, Lin Y C, et al. Simple replacement reaction for the preparation of ternary Fe1–xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction. J Am Chem Soc, 2012, 134(24): 10011 doi: 10.1021/ja3010754
|
[3] |
Zhang J M, Qu X M, Han Y, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl Catal B Environ, 2020, 263: 118345 doi: 10.1016/j.apcatb.2019.118345
|
[4] |
Tao Z C, Chen W, Yang J, et al. Ultrathin yet transferrable Pt- or PtRu-decorated graphene films as efficient electrocatalyst for methanol oxidation reaction. Sci China Mater, 2019, 62(2): 273 doi: 10.1007/s40843-018-9366-x
|
[5] |
Huang L, Zhang X, Wang Q, et al. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J Am Chem Soc, 2018, 140(3): 1142 doi: 10.1021/jacs.7b12353
|
[6] |
Yin S L, Kumar R D, Yu H J, et al. Pt@Mesoporous PtRu yolk-shell nanostructured electrocatalyst for methanol oxidation reaction. ACS Sustainable Chem Eng, 2019, 7(17): 14867 doi: 10.1021/acssuschemeng.9b02958
|
[7] |
Bai L. Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru. Appl Surf Sci, 2018, 433: 279 doi: 10.1016/j.apsusc.2017.10.026
|
[8] |
Chen F X, Ren J K, He Q, et al. Facile and one-pot synthesis of uniform PtRu nanoparticles on polydopamine-modified multiwalled carbon nanotubes for direct methanol fuel cell application. J Colloid Interface Sci, 2017, 497: 276 doi: 10.1016/j.jcis.2017.03.026
|
[9] |
Gupta D, Chakraborty S, Amorim R G, et al. Local electrocatalytic activity of PtRu supported on nitrogen-doped carbon nanotubes towards methanol oxidation by scanning electrochemical microscopy. J Mater Chem A, 2021, 9(37): 21291 doi: 10.1039/D1TA04962C
|
[10] |
Wang X P, Xi S B, Lee W S V, et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat Commun, 2020, 11: 4647 doi: 10.1038/s41467-020-18459-9
|
[11] |
Zhang Z C, Luo Z M, Chen B, et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv Mater, 2016, 28(39): 8712 doi: 10.1002/adma.201603075
|
[12] |
Yang P P, Yuan X L, Hu H C, et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater, 2018, 28(1): 1704774 doi: 10.1002/adfm.201704774
|
[13] |
Luo B, Zhao F, Xie Z, et al. Polyhedron-assembled ternary PtCuCo nanochains: Integrated functions enhance the electrocatalytic performance of methanol oxidation at elevated temperature. ACS Appl Mater Interfaces, 2019, 11(35): 32282 doi: 10.1021/acsami.9b10192
|
[14] |
Cui X, Xiao P, Wang J, et al. Highly branched metal alloy networks with superior activities for the methanol oxidation reaction. Angewandte Chemie, 2017, 56(16): 4488 doi: 10.1002/anie.201701149
|
[15] |
Anantharaj S, Sugime H, Noda S. Ultrafast growth of a Cu(OH)2–CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis. ACS Appl Mater Interfaces, 2020, 12(24): 27327 doi: 10.1021/acsami.0c08979
|
[16] |
Arunachalam P, Ghanem M A, Al-Mayouf A M, et al. Enhanced electrocatalytic performance of mesoporous nickel-cobalt oxide electrode for methanol oxidation in alkaline solution. Mater Lett, 2017, 196: 365 doi: 10.1016/j.matlet.2017.03.080
|
[17] |
Xue S F, Deng W T, Yang F, et al. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal, 2018, 8(8): 7578 doi: 10.1021/acscatal.8b00366
|
[18] |
Li H Y, Wu X S, Tao X L, et al. Direct synthesis of ultrathin Pt nanowire arrays as catalysts for methanol oxidation. Small, 2020, 16(33): 2001135 doi: 10.1002/smll.202001135
|
[19] |
Wu Y P, Tian J W, Liu S, et al. Bi-microporous metal-organic frameworks with cubane [M4(OH)4] (M=Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction. Angewandte Chemie, 2019, 131(35): 12313 doi: 10.1002/ange.201907136
|
[20] |
Long X Y, Yin P, Lei T, et al. Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF. Appl Catal B:Environ, 2020, 260: 118187 doi: 10.1016/j.apcatb.2019.118187
|
[21] |
Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today, 1997, 38(4): 445 doi: 10.1016/S0920-5861(97)00054-0
|
[22] |
Tong Y Y, Yan X, Liang J, et al. Metal-based electrocatalysts for methanol electro-oxidation: Progress, opportunities, and challenges. Small, 2021, 17(9): 1904126 doi: 10.1002/smll.201904126
|
[23] |
Hsieh C T, Lin J Y. Fabrication of bimetallic Pt-M (M = Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells. J Power Sources, 2009, 188(2): 347 doi: 10.1016/j.jpowsour.2008.12.031
|
[24] |
Liu C, Chen Z L, Rao D W, et al. Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Sci China Mater, 2021, 64(3): 611 doi: 10.1007/s40843-020-1460-y
|
[25] |
Guo L, Huang L B, Jiang W J, et al. Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. J Mater Chem A, 2017, 5(19): 9014 doi: 10.1039/C7TA01859B
|
[26] |
Housmans T H M, Wonders A H, Koper M T M. Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study. J Phys Chem B, 2006, 110(20): 10021 doi: 10.1021/jp055949s
|
[27] |
Shenashen M A, Hassen D, El-Safty S A, et al. Axially oriented tubercle vein and X-crossed sheet of N-Co3O4@C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction. Chem Eng J, 2017, 313: 83 doi: 10.1016/j.cej.2016.12.003
|
[28] |
Wang Q, Zhao Z, Jia Y, et al. Unique Cu@CuPt core-shell concave octahedron with enhanced methanol oxidation activity. ACS Appl Mater Interfaces, 2017, 9(42): 36817 doi: 10.1021/acsami.7b11268
|
[29] |
Feng Q C, Zhao S, He D S, et al. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J Am Chem Soc, 2018, 140(8): 2773 doi: 10.1021/jacs.7b13612
|
[30] |
Shan A X, Huang S Y, Zhao H F, et al. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res, 2020, 13(11): 3088 doi: 10.1007/s12274-020-2978-3
|
[31] |
Du X W, Luo S P, Du H Y, et al. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J Mater Chem A, 2016, 4(5): 1579 doi: 10.1039/C5TA09261B
|
[32] |
Liao Y, Yu G, Zhang Y, et al. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem C, 2016, 120(19): 10476 doi: 10.1021/acs.jpcc.6b02630
|
[33] |
Fu G, Yan X, Cui Z, et al. Catalytic activities for methanol oxidation on ultrathin CuPt3 wavy nanowires with/without smart polymer. Chem Sci, 2016, 7(8): 5414 doi: 10.1039/C6SC01501H
|
[34] |
Zhao Y G, Liu J J, Liu C G, et al. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal, 2016, 6(7): 4127 doi: 10.1021/acscatal.6b00540
|
[35] |
Deng K, Xu Y, Yang D D, et al. Pt–Ni–P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. J Mater Chem A, 2019, 7(16): 9791 doi: 10.1039/C9TA00928K
|
[36] |
Yin S L, Wang Z Q, Li C J, et al. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. Nanoscale Adv, 2020, 2(3): 1084 doi: 10.1039/D0NA00020E
|
[37] |
Eid K, Wang H, He P, et al. One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale, 2015, 7(40): 16860 doi: 10.1039/C5NR04557F
|
[38] |
Li C, Liu T, He T, et al. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction. Nanoscale, 2018, 10(10): 4670 doi: 10.1039/C7NR09669K
|
[39] |
Zhang L, Zhang X F, Chen X L, et al. Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci, 2019, 536: 556 doi: 10.1016/j.jcis.2018.10.080
|
[40] |
Lu Q Q, Sun L T, Zhao X, et al. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res, 2018, 11(5): 2562 doi: 10.1007/s12274-017-1881-z
|
[41] |
Kwon T, Jun M, Kim H Y, et al. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv Funct Mater, 2018, 28(13): 1706440 doi: 10.1002/adfm.201706440
|
[42] |
Zhang P F, Dai X P, Zhang X, et al. One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem Mater, 2015, 27(18): 6402 doi: 10.1021/acs.chemmater.5b02575
|
[43] |
Sun Y, Zhou Y J, Zhu C, et al. Synergistic Cu@CoOx core-cage structure on carbon layers as highly active and durable electrocatalysts for methanol oxidation. Appl Catal B:Environ, 2019, 244: 795 doi: 10.1016/j.apcatb.2018.12.017
|
[44] |
Ghouri Z K, Barakat N A M, Kim H Y. Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoχCuy alloy nanoparticles-decorated CNFs. Sci Rep, 2015, 5: 16695 doi: 10.1038/srep16695
|
[45] |
Wu D F, Zhang W, Cheng D J. Facile synthesis of Cu/NiCu electrocatalysts integrating alloy, core–shell, and one-dimensional structures for efficient methanol oxidation reaction. ACS Appl Mater Interfaces, 2017, 9(23): 19843 doi: 10.1021/acsami.7b03876
|
[46] |
Kaur B, Anu Prathap M U, Srivastava R. Synthesis of transition-metal exchanged nanocrystalline ZSM-5 and their application in electrochemical oxidation of glucose and methanol. ChemPlusChem, 2012, 77(12): 1119 doi: 10.1002/cplu.201200236
|
[47] |
Kaur B, Srivastava R, Satpati B. Highly efficient CeO2 decorated nano-ZSM-5 catalyst for electrochemical oxidation of methanol. ACS Catal, 2016, 6(4): 2654 doi: 10.1021/acscatal.6b00525
|
[48] |
Samanta S, Bhunia K, Pradhan D, et al. Ni and Cu ion-exchanged nanostructured mesoporous zeolite: A noble metal free, efficient, and durable electrocatalyst for alkaline methanol oxidation reaction. Mater Today Energy, 2018, 8: 45 doi: 10.1016/j.mtener.2018.02.007
|
[49] |
Samanta S, Bhunia K, Pradhan D, et al. NiCuCo2O4 supported Ni-Cu ion-exchanged mesoporous zeolite heteronano architecture: An efficient, stable, and economical nonprecious electrocatalyst for methanol oxidation. ACS Sustain Chem Eng, 2018, 6(2): 2023 doi: 10.1021/acssuschemeng.7b03444
|
[50] |
Lu X F, Xia B Y, Zang S Q, et al. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angewandte Chemie Int Ed, 2020, 59(12): 4634 doi: 10.1002/anie.201910309
|
[51] |
Zhang X, Chen A, Zhong M, et al. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem Energy Rev, 2019, 2(1): 29 doi: 10.1007/s41918-018-0024-x
|
[52] |
Tang C Y, Asefa T. Ternary ZIF-8-derived dual-metal CoCu nanoparticles in porous carbon polyhedra as efficient catalysts for methanol oxidation. J Mater Chem A, 2020, 8(25): 12285 doi: 10.1039/D0TA04146G
|
[53] |
Du J N, You S J, Li X R, et al. In situ crystallization of active NiOOH/CoOOH heterostructures with hydroxide ion adsorption sites on velutipes-like CoSe/NiSe nanorods as catalysts for oxygen evolution and cocatalysts for methanol oxidation. ACS Appl Mater Interfaces, 2020, 12(1): 686 doi: 10.1021/acsami.9b16626
|
[54] |
Qian L, Luo S L, Wu L S, et al. In situ growth of metal organic frameworks derived hierarchical hollow porous Co3O4/NiCo2O4 nanocomposites on nickel foam as self-supported flexible electrode for methanol electrocatalytic oxidation. Appl Surf Sci, 2020, 503: 144306 doi: 10.1016/j.apsusc.2019.144306
|