Citation: | QU Jun-cong, SHI Cheng-xiang, ZHANG Xiang-wen, PAN Lun, ZOU Ji-jun. Research advances in multifunctional catalysts for the conversion of lignin to biomass fuels[J]. Chinese Journal of Engineering, 2022, 44(4): 664-675. doi: 10.13374/j.issn2095-9389.2021.09.28.003 |
[1] |
謝嘉維, 張香文, 謝君健, 等. 由生物質合成高密度噴氣燃料. 化學進展, 2018, 30(9):1424
Xie J W, Zhang X W, Xie J J, et al. Synthesis of high-density jet fuels from biomass. Prog Chem, 2018, 30(9): 1424
|
[2] |
Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev, 2006, 106(9): 4044 doi: 10.1021/cr068360d
|
[3] |
晉樂樂. 催化轉化木質纖維素類生物質制備液態燃料[學位論文]. 合肥: 中國科學技術大學, 2020
Jin L L. Catalytic Conversion of Lignocellulosic Biomass into Liquid Fuels [Dissertation]. Hefei: University of Science and Technology of China, 2020
|
[4] |
Wu X J, Fan X T, Xie S J, et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat Catal, 2018, 1(10): 772 doi: 10.1038/s41929-018-0148-8
|
[5] |
Rinaldi R, Jastrzebski R, Clough M T, et al. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed, 2016, 55(29): 8164 doi: 10.1002/anie.201510351
|
[6] |
Jing Y, Dong L, Guo Y, et al. Chemicals from lignin: A review of catalytic conversion involving hydrogen. ChemSusChem, 2020, 13(17): 4181 doi: 10.1002/cssc.201903174
|
[7] |
Cheng F, Brewer C E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renew Sustain Energy Rev, 2017, 72: 673 doi: 10.1016/j.rser.2017.01.030
|
[8] |
Joffres B, Nguyen M T, Laurenti D, et al. Lignin hydroconversion on MoS2-based supported catalyst: Comprehensive analysis of products and reaction scheme. Appl Catal B Environ, 2016, 184: 153 doi: 10.1016/j.apcatb.2015.11.005
|
[9] |
Ma R, Hao W Y, Ma X L, et al. Catalytic ethanolysis of kraft lignin into high-value small-molecular chemicals over a nanostructured α-molybdenum carbide catalyst. Angew Chem Int Ed, 2014, 53(28): 7310 doi: 10.1002/anie.201402752
|
[10] |
Du B Y, Chen C Z, Sun Y, et al. Efficient and controllable ultrasound-assisted depolymerization of organosolv lignin catalyzed to liquid fuels by MCM-41 supported phosphotungstic acid. RSC Adv, 2020, 10(52): 31479 doi: 10.1039/D0RA05069E
|
[11] |
Schutyser W, Renders T, Van den Bosch S, et al. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev, 2018, 47(3): 852 doi: 10.1039/C7CS00566K
|
[12] |
Cui T T, Ma L N, Wang S B, et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J Am Chem Soc, 2021, 143(25): 9429 doi: 10.1021/jacs.1c02328
|
[13] |
Salvachúa D, Katahira R, Cleveland N S, et al. Lignin depolymerization by fungal secretomes and a microbial sink. Green Chem, 2016, 18(22): 6046 doi: 10.1039/C6GC01531J
|
[14] |
Shao Y, Xia Q N, Dong L, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat Commun, 2017, 8: 16104 doi: 10.1038/ncomms16104
|
[15] |
鄭云武, 王繼大, 劉燦, 等. Ni-P/HZSM-5催化木質素降解制備酚類化學品. 化工進展, 2020, 39(5):1792
Zheng Y W, Wang J D, Liu C, et al. Selectivity catalytic depolymerization of the hydrolyzed lignin to produce phenolic chemicals over nickel phosphides supported on HZSM-5 catalysts. Chem Ind Eng Prog, 2020, 39(5): 1792
|
[16] |
Wu L P, Hu X, Wang S, et al. Acid-treatment of bio-oil in methanol: The distinct catalytic behaviours of a mineral acid catalyst and a solid acid catalyst. Fuel, 2018, 212: 412 doi: 10.1016/j.fuel.2017.10.049
|
[17] |
Ma Z Q, Wang J H, Li C, et al. New sight on the lignin torrefaction pretreatment: Relevance between the evolution of chemical structure and the properties of torrefied gaseous, liquid, and solid products. Bioresour Technol, 2019, 288: 121528 doi: 10.1016/j.biortech.2019.121528
|
[18] |
Li Y D, Shuai L, Kim H, et al. An “ideal lignin” facilitates full biomass utilization. Sci Adv, 2018, 4(9): eaau2968 doi: 10.1126/sciadv.aau2968
|
[19] |
徐海升, 王豪, 王博. 生物燃料加氫脫氧催化劑研究進展. 生物質化學工程, 2017, 51(6):55 doi: 10.3969/j.issn.1673-5854.2017.06.010
Xu H S, Wang H, Wang B. Advance research on hydrodeoxygenation catalysts of biofuel. Biomass Chem Eng, 2017, 51(6): 55 doi: 10.3969/j.issn.1673-5854.2017.06.010
|
[20] |
Dang R, Ma X R, Luo J, et al. Hydrodeoxygenation of 2-methoxy phenol: Effects of catalysts and process parameters on conversion and products selectivity. J Energy Inst, 2020, 93(4): 1527 doi: 10.1016/j.joei.2020.01.015
|
[21] |
Joffres B, Lorentz C, Vidalie M, et al. Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Appl Catal B Environ, 2014, 145: 167 doi: 10.1016/j.apcatb.2013.01.039
|
[22] |
Salam M A, Arora P, Ojagh H, et al. NiMoS on alumina-USY zeolites for hydrotreating lignin dimers: Effect of support acidity and cleavage of C?C bonds. Sustainable Energy Fuels, 2020, 4(1): 149 doi: 10.1039/C9SE00507B
|
[23] |
?enol O ?, Viljava T R, Krause A O I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal Today, 2005, 100(3-4): 331 doi: 10.1016/j.cattod.2004.10.021
|
[24] |
Gon?alves V O O, Brunet S, Richard F. Hydrodeoxygenation of cresols over Mo/Al2O3 and CoMo/Al2O3 sulfided catalysts. Catal Lett, 2016, 146(8): 1562 doi: 10.1007/s10562-016-1787-5
|
[25] |
Bui V N, Toussaint G, Laurenti D, et al. Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of gua?acol and SRGO mixed feed. Catal Today, 2009, 143(1-2): 172 doi: 10.1016/j.cattod.2008.11.024
|
[26] |
Wang W Y, Zhang X Z, Yang Y Q, et al. Progress in the catalysts for the hydrodeoxygenation of phenols in bio-oil. Chin J Catalysis (Chin Version)
|
[27] |
Li W T, Wei X Y, Li X K, et al. Catalytic hydroconversion of lignite-related model compounds over difunctional Ni?Mg2Si/γ?Al2O3. Fuel, 2017, 200: 208 doi: 10.1016/j.fuel.2017.03.067
|
[28] |
Laskar D D, Tucker M P, Chen X W, et al. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chem, 2014, 16(2): 897 doi: 10.1039/c3gc42041h
|
[29] |
Toledano A, Serrano L, Pineda A, et al. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening. Appl Catal B Environ, 2014, 145: 43 doi: 10.1016/j.apcatb.2012.10.015
|
[30] |
Dong L, Lin L F, Han X, et al. Breaking the limit of lignin monomer production via cleavage of interunit carbon-carbon linkages. Chem, 2019, 5(6): 1521 doi: 10.1016/j.chempr.2019.03.007
|
[31] |
Lee H, Kim H, Yu M J, et al. Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci Reports, 2016, 6: 28765
|
[32] |
Wu S K, Lai P C, Lin Y C, et al. Atmospheric hydrodeoxygenation of guaiacol over Alumina-, Zirconia-, and Silica-supported nickel phosphide catalysts. ACS Sustainable Chem Eng, 2013, 1(3): 349 doi: 10.1021/sc300157d
|
[33] |
Mo L, Yu W, Cai H, et al. Hydrodeoxygenation of bio-derived phenol to cyclohexane fuel catalyzed by bifunctional mesoporous organic-inorganic hybrids. Front Chem, 2018, 6: 216 doi: 10.3389/fchem.2018.00216
|
[34] |
Zhao Z, Shi H, Wan C, et al. Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. J Am Chem Soc, 2017, 139(27): 9178 doi: 10.1021/jacs.7b02153
|
[35] |
Liu Y S, Baráth E, Shi H, et al. Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat Catal, 2018, 1(2): 141 doi: 10.1038/s41929-017-0015-z
|
[36] |
Borodina I B, Ponomareva O A, Fajula F, et al. Hydroalkylation of benzene and ethylbenzene over metal containing zeolite catalysts. Microporous Mesoporous Mater, 2007, 105(1-2): 181 doi: 10.1016/j.micromeso.2007.05.058
|
[37] |
Zhao C, Camaioni D M, Lercher J A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. J Catal, 2012, 288: 92 doi: 10.1016/j.jcat.2012.01.005
|
[38] |
Liu Y S, Cheng G H, Baráth E, et al. Alkylation of lignin-derived aromatic oxygenates with cyclic alcohols on acidic zeolites. Appl Catal B Environ, 2021, 281: 119424 doi: 10.1016/j.apcatb.2020.119424
|
[39] |
Nie G K, Dai Y Y, Liu Y N, et al. High yield one-pot synthesis of high density and low freezing point jet-fuel-ranged blending from bio-derived phenol and cyclopentanol. Chem Eng Sci, 2019, 207: 441 doi: 10.1016/j.ces.2019.06.050
|
[40] |
Yang Z, Wei X Y, Zhang M, et al. Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A. Fuel Process Technol, 2018, 177: 345 doi: 10.1016/j.fuproc.2018.04.017
|
[41] |
Zhou X, Wei X Y, Ma Y M, et al. Highly selective catalytic hydrocracking >CH-O- bridged bonds in an alkali lignin over Ni/Hβ. Fuel, 2021, 287: 119474 doi: 10.1016/j.fuel.2020.119474
|
[42] |
Zhu C, Cao J P, Zhao X Y, et al. Mechanism of Ni-catalyzed selective CO cleavage of lignin model compound benzyl phenyl ether under mild conditions. J Energy Inst, 2019, 92(1): 74 doi: 10.1016/j.joei.2017.11.004
|
[43] |
Mendes M J, Santos O A A, Jord?o E, et al. Hydrogenation of oleic acid over ruthenium catalysts. Appl Catal A Gen, 2001, 217(1-2): 253 doi: 10.1016/S0926-860X(01)00613-5
|
[44] |
Zerva C, Karakoulia S A, Kalogiannis K G, et al. Hydrodeoxygenation of phenol and biomass fast pyrolysis oil (bio-oil) over Ni/WO3-ZrO2 catalyst. Catal Today, 2021, 366: 57 doi: 10.1016/j.cattod.2020.08.029
|
[45] |
Kim Y, Shim J, Choi J W, et al. Continuous-flow production of petroleum-replacing fuels from highly viscous Kraft lignin pyrolysis oil using its hydrocracked oil as a solvent. Energy Convers Manag, 2020, 213: 112728 doi: 10.1016/j.enconman.2020.112728
|
[46] |
Ardiyanti A R, Khromova S A, Venderbosch R H, et al. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support. Appl Catal B Environ, 2012, 117-118: 105 doi: 10.1016/j.apcatb.2011.12.032
|
[47] |
Leng S, Wang X D, He X B, et al. NiFe/γ-Al2O3: A universal catalyst for the hydrodeoxygenation of bio-oil and its model compounds. Catal Commun, 2013, 41: 34 doi: 10.1016/j.catcom.2013.06.037
|
[48] |
Nesterov N S, Smirnov A A, Pakharukova V P, et al. Advanced green approaches for the synthesis of NiCu-containing catalysts for the hydrodeoxygenation of anisole. Catal Today, 2021, 379: 262 doi: 10.1016/j.cattod.2020.09.006
|
[49] |
李亞瓊, 梁凱彥, 王靜靜, 等. 介孔二氧化硅基復合相變材料研究進展. 工程科學學報, 2020, 42(10):1229
Li Y Q, Liang K Y, Wang J J, et al. Research progress of mesoporous silica-based composite phase change materials. Chin J Eng, 2020, 42(10): 1229
|
[50] |
鞏正奇, 閆楚璇, 宣之易, 等. 制備類石墨相氮化碳多孔光催化劑的模板法發展. 工程科學學報, 2021, 43(3):345
Gong Z Q, Yan C X, Xuan Z Y, et al. Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride. Chin J Eng, 2021, 43(3): 345
|
[51] |
Xue H Y, Gong X X, Xu J J, et al. Performance of a Ni-Cu-Co/Al2O3 catalyst on in situ hydrodeoxygenation of bio-derived phenol. Catalysts, 2019, 9(11): 952 doi: 10.3390/catal9110952
|
[52] |
Sun J M, Karim A M, Zhang H, et al. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal, 2013, 306: 47 doi: 10.1016/j.jcat.2013.05.020
|
[53] |
Bui P, Cecilia J A, Oyama S T, et al. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J Catal, 2012, 294: 184 doi: 10.1016/j.jcat.2012.07.021
|
[54] |
Moon J S, Kim E G, Lee Y K. Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol: A joint XAFS and DFT study. J Catal, 2014, 311: 144 doi: 10.1016/j.jcat.2013.11.023
|
[55] |
Yu Z Q, Wang Y, Sun Z C, et al. Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chem, 2018, 20(3): 609 doi: 10.1039/C7GC03262E
|
[56] |
Jin L H, Xia H, Huang Z P, et al. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. J Mater Chem A, 2016, 4(28): 10925 doi: 10.1039/C6TA03028A
|
[57] |
李燕妮, 遇治權, 張鑫, 等. 化學鍍法制備Ni3P/γ-Al2O3及其催化苯酚加氫脫氧性能. 化學反應工程與工藝, 2019, 35(6):516
Li Y N, Yu Z Q, Zhang X, et al. Hydrodeoxygenation of phenol over Ni3P/γ-Al2O3 catalyst prepared by electroless plating. Chem React Eng Technol, 2019, 35(6): 516
|