Citation: | LIU Qing, SHAO Xin, YANG Jian-ping, ZHANG Jiang-shan. Multiscale modeling and collaborative manufacturing for steelmaking plants[J]. Chinese Journal of Engineering, 2021, 43(12): 1698-1712. doi: 10.13374/j.issn2095-9389.2021.09.27.010 |
[1] |
劉青, 田乃媛, 殷瑞鈺. 煉鋼廠系統的運行原則與調控策略. 過程工程學報, 2003, 3(2):171 doi: 10.3321/j.issn:1009-606X.2003.02.015
Liu Q, Tian N Y, Yin R Y. Operation principle and control strategy for steelmaking workshop system. Chin J Process Eng, 2003, 3(2): 171 doi: 10.3321/j.issn:1009-606X.2003.02.015
|
[2] |
Wang Z, Chang J, Ju Q P, et al. Prediction model of end-point manganese content for BOF steelmaking process. ISIJ Int, 2012, 52(9): 1585 doi: 10.2355/isijinternational.52.1585
|
[3] |
林文輝, 焦樹強, 孫建坤, 等. 轉爐吹煉后期碳含量預報的改進指數模型. 工程科學學報, 2020, 42(7):854
Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854
|
[4] |
Wang Z, Xie F M, Wang B, et al. The control and prediction of end-point phosphorus content during BOF steelmaking process. Steel Res Int, 2014, 85(4): 599 doi: 10.1002/srin.201300194
|
[5] |
李南, 林文輝, 曹玲玲, 等. 基于熔池混勻度的轉爐煙氣分析定碳模型. 工程科學學報, 2018, 40(10):1244
Li N, Lin W H, Cao L L, et al. Carbon prediction model for basic oxygen furnace off-gas analysis based on bath mixing degree. Chin J Eng, 2018, 40(10): 1244
|
[6] |
張壯, 曹玲玲, 林文輝, 等. 基于IPSO?RELM轉爐冶煉終點錳含量預測模型. 工程科學學報, 2019, 41(8):1052
Zhang Z, Cao L L, Lin W H, et al. Improved prediction model for BOF end-point manganese content based on IPSO?RELM method. Chin J Eng, 2019, 41(8): 1052
|
[7] |
付國慶, 劉青, 汪宙, 等. LF精煉終點鋼水溫度灰箱預報模型. 北京科技大學學報, 2013, 35(7):948
Fu G Q, Liu Q, Wang Z, et al. Grey box model for predicting the LF end-point temperature of molten steel. J Univ Sci Technol Beijing, 2013, 35(7): 948
|
[8] |
Xin Z C, Zhang J S, Zhang J G, et al. Mathematical modelling and plant trial on slagging regime in a ladle furnace for high-efficiency desulphurization. Ironmaking Steelmaking, 2021: 1
|
[9] |
Yang J P, Zhang J S, Guo W D, et al. End-point temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation. ISIJ Int, 2021, 61(7): 2100 doi: 10.2355/isijinternational.ISIJINT-2020-540
|
[10] |
Dou K, Yang Z G, Liu Q, et al. Influence of secondary cooling mode on solidification structure and macro-segregation behavior for high-carbon continuous casting bloom. High Temp Mater Process, 2017, 36(7): 741 doi: 10.1515/htmp-2016-0022
|
[11] |
楊振國. GCr15軸承鋼連鑄坯宏觀碳偏析的影響因素及控制研究[學位論文]. 北京: 北京科技大學, 2014
Yang Z G. Research on the Influencing Factors and Control of Carbon Macrosegregation of Blooms in Continuous Casting of GCr15 Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2014
|
[12] |
陳恒志. 連鑄坯典型缺陷預測研究[學位論文]. 北京: 北京科技大學, 2017
Chen H Z. Research on Prediction of Typical Defects of Continuous Casting Bloom [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[13] |
Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409
|
[14] |
Li G H, Wang B, Liu Q, et al. A process model for BOF process based on bath mixing degree. Int J Miner Metall Mater, 2010, 17(6): 715 doi: 10.1007/s12613-010-0379-4
|
[15] |
汪宙. 轉爐冶煉中高碳鋼過程及終點控制研究[學位論文]. 北京: 北京科技大學, 2016
Wang Z. Study on the Control of Steelmaking Process and Blowing End-Point for Medium-High Carbon Steel Melting by Converter [Dissertation]. Beijing: University of Science and Technology Beijing, 2016
|
[16] |
Han Y S, Wang X Y, Zhang J S, et al. Comparison of transverse uniform and non-uniform secondary cooling strategies on heat transfer and solidification structure of continuous-casting billet. Metals, 2019, 9(5): 543 doi: 10.3390/met9050543
|
[17] |
竇志超, 張曉峰, 尹佳, 等. 基于有效拉速和有效過熱度的連鑄二冷控制模型. 北京科技大學學報, 2011, 33(11):1349
Dou Z C, Zhang X F, Yin J, et al. Secondary cooling control model based on effective-speed and effective-superheat in continuous casting. J Univ Sci Technol Beijing, 2011, 33(11): 1349
|
[18] |
Dou K, Liu Q. A new cooling strategy in curved continuous casting process of vanadium micro-alloyed YQ450NQR1 steel bloom combining experimental and modeling approach. Metall Mater Trans A, 2020, 51(8): 3945 doi: 10.1007/s11661-020-05819-9
|
[19] |
劉青, 韓延申, 張江山. 一種改善包晶鋼連鑄中厚板坯中心偏析與表面裂紋的方法: 中國專利, CN111774546B. 2021-03-30
Liu Q, Han Y S, Zhang J S. Method for Improving Center Segregation and Surface Cracks of Peritectic Steel Continuous Casting Medium-Thickness Slab: China Patent, CN111774546B. 2021-03-30
|
[20] |
竇坤. 釩微合金化鋼連鑄方坯凝固特性與組織性能研究[學位論文]. 北京: 北京科技大學, 2017
Dou K. Research on Solidification Characteristics and Microstructure Properties for Vanadium Micro-Alloyed Steel Bloom in Continuous Casting Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[21] |
陳尚. 連鑄板坯二冷優化與典型缺陷研究[學位論文]. 北京: 北京科技大學, 2018
Chen S. Research on Secondary Cooling Optimization and Typical Defects of Continuous Casting Slabs [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
|
[22] |
Zou L L, Zhang J S, Liu Q, et al. Prediction of central carbon segregation in continuous casting billet using A regularized extreme learning machine model. Metals, 2019, 9(12): 1312 doi: 10.3390/met9121312
|
[23] |
殷瑞鈺. 關于智能化鋼廠的討論——從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6):1
Yin R Y. A discussion on “smart” steel plant—view from physical system side. Iron Steel, 2017, 52(6): 1
|
[24] |
劉青, 王剛, 王彬, 等. 基于產品結構的煉鋼?連鑄區段產能解析. 重慶大學學報, 2014, 37(1):75 doi: 10.11835/j.issn.1000-582X.2014.01.012
Liu Q, Wang G, Wang B, et al. Capacity analysis of steelmaking-continuous casting section based on different products mixes. J Chongqing Univ, 2014, 37(1): 75 doi: 10.11835/j.issn.1000-582X.2014.01.012
|
[25] |
穆衍清. 轉爐特殊鋼廠煉鋼−連鑄生產過程運行優化研究[學位論文]. 北京: 北京科技大學, 2011
Mu Y Q. Research on Operation Optimization for Productive Process of Steelmaking-Continuous Casting in BOF Special Steel Plants [Dissertation]. Beijing: University of Science and Technology Beijing, 2011
|
[26] |
劉青, 黃星武, 富平原. 煉鋼廠系統生產模式優化. 北京科技大學學報, 2005, 27(6):736 doi: 10.3321/j.issn:1001-053X.2005.06.024
Liu Q, Huang X W, Fu P Y. Production mode optimization of a steelmaking workshop system. J Univ Sci Technol Beijing, 2005, 27(6): 736 doi: 10.3321/j.issn:1001-053X.2005.06.024
|
[27] |
楊建平, 張江山, 劉青. 煉鋼?連鑄區段3種典型工序界面技術研究進展. 工程科學學報, 2020, 42(12):1542
Yang J P, Zhang J S, Liu Q. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section. Chin J Eng, 2020, 42(12): 1542
|
[28] |
王彬, 王闖, 王寶, 等. 煉鋼-連鑄過程生產計劃與調度問題綜合優化研究. 武漢科技大學學報, 2014, 37(3):161
Wang B, Wang C, Wang B, et al. Comprehensive optimization of production planning and scheduling for steelmaking-continuous casting process. J Wuhan Univ Sci Technol, 2014, 37(3): 161
|
[29] |
王闖, 劉青, 李慶益, 等. 基于改進單親遺傳算法的煉鋼最優爐次計劃模型. 控制理論與應用, 2013, 30(6):734
Wang C, Liu Q, Li Q Y, et al. Optimal charge plan model for steelmaking based on modified partheno-genetic algorithm. Control Theory Appl, 2013, 30(6): 734
|
[30] |
鄒草云. 長材型特殊鋼廠煉鋼−連鑄過程生產計劃優化研究[學位論文]. 北京: 北京科技大學, 2016
Zou C Y. Research on Planning Optimization for Steelmaking-Continuous Casting Process in Special Steel Plants of Long Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2016
|
[31] |
劉倩. 基于規則的煉鋼-連鑄過程生產調度遺傳算法模型[學位論文]. 北京: 北京科技大學, 2020
Liu Q. Rule-Based Genetic Algorithm Model of Production Scheduling for Steelmaking-Continuous Casting Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|
[32] |
劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144
Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking-continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144
|
[33] |
劉倩, 楊建平, 王柏琳, 等. 基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型. 工程科學學報, 2020, 42(5):645
Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking-continuous casting production scheduling based on the “furnace-caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645
|
[34] |
邵鑫, 楊建平, 王柏琳, 等. 煉鋼?連鑄區段多工序運行協同控制. 鋼鐵, 2021, 56(8):101
Shao X, Yang J P, Wang B L, et al. Cooperative control of multi-process operation in steelmaking-continuous casting section. Iron Steel, 2021, 56(8): 101
|
[35] |
Yang J P, Liu Q, Guo W D, et al. Quantitative evaluation of multi-process collaborative operation in steelmaking-continuous casting sections. Int J Miner Metall Mater, 2021, 28(8): 1353 doi: 10.1007/s12613-020-2227-5
|
[36] |
穆衍清, 尹佳, 謝飛鳴, 等. 特殊鋼廠爐機匹配研究. 北京科技大學學報, 2013, 35(1):126
Mu Y Q, Yin J, Xie F M, et al. Research on matching between furnaces and casters in special steel plants. J Univ Sci Technol Beijing, 2013, 35(1): 126
|
[37] |
Yang J P, Wang B L, Liu Q, et al. Scheduling model for the practical steelmaking-continuous casting production and heuristic algorithm based on the optimization of “furnace-caster matching” mode. ISIJ Int, 2020, 60(6): 1213 doi: 10.2355/isijinternational.ISIJINT-2019-423
|
[38] |
徐兆俊, 鄭忠, 高小強. 煉鋼連鑄生產調度的優先級策略混合遺傳算法. 控制與決策, 2016, 31(8):1394
Xu Z J, Zheng Z, Gao X Q. HGA combined with priority strategy for production planning of steelmaking-continuous casting. Control Decis, 2016, 31(8): 1394
|
[39] |
劉光航, 李鐵克. 煉鋼?連鑄生產調度模型及啟發式算法. 系統工程, 2002, 20(6):44 doi: 10.3969/j.issn.1001-4098.2002.06.009
Liu G H, Li T K. A steelmaking-continuous casting production scheduling model and its heuristic algorithm. Syst Eng, 2002, 20(6): 44 doi: 10.3969/j.issn.1001-4098.2002.06.009
|
[40] |
尹佳. 中小轉爐流程LF的合理配置及其對生產運行的影響研究[學位論文]. 北京: 北京科技大學, 2007
Yin J. The Rational Arrangement of Ladle Furnace of the Medium and Small Sized Converters Process and its Influence to Production [Dissertation]. Beijing: University of Science and Technology Beijing, 2007
|
[41] |
劉青, 趙平, 吳曉東, 等. 鋼包的運行控制. 北京科技大學學報, 2005, 27(2):235 doi: 10.3321/j.issn:1001-053X.2005.02.025
Liu Q, Zhao P, Wu X D, et al. Control strategy for ladle running. J Univ Sci Technol Beijing, 2005, 27(2): 235 doi: 10.3321/j.issn:1001-053X.2005.02.025
|
[42] |
洪宇杰, 楊建平, 劉青, 等. 離線烘烤鋼包數量計算模型建立. 鋼鐵研究學報, 2021, 33(3):209
Hong Y J, Yang J P, Liu Q, et al. Establishment of calculation model for number of offline baked steel ladle. J Iron Steel Res, 2021, 33(3): 209
|
[43] |
余相灼. 煉鋼廠鋼包運行優化與仿真模擬研究[學位論文]. 北京: 北京科技大學, 2019
Yu X Z. Research on Optimization and Simulation of Ladle Operation in Steelmaking Plant [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
|
[44] |
Torre?o A, Sapena ó, Onaindia E. FMAP: A platform for the development of distributed multi-agent planning systems. Knowl Based Syst, 2018, 145: 166 doi: 10.1016/j.knosys.2018.01.013
|
[45] |
Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control, 2005, 50(5): 655 doi: 10.1109/TAC.2005.846556
|
[46] |
王彬. 長材型特殊鋼廠煉鋼−連鑄過程生產計劃優化與協同調度[學位論文]. 北京: 北京科技大學, 2015
Wang B. Optimal Planning and Collaborative Scheduling on Steelmaking-Continuous Casting Process in Special Steel Plantsof Long Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
|
[47] |
劉青, 王彬, 汪宙, 等. 高品質鋼煉鋼?連鑄過程的精益制造. 連鑄, 2016, 41(3):1
Liu Q, Wang B, Wang Z, et al. Fine manufacturing for steelmaking-continuous casting process of high quality steel. Continuous Cast, 2016, 41(3): 1
|
[48] |
Liu Q, Wang B, Wang Z, et al. Fine production in steelmaking plants. Mater Today Proc, 2015, 2: S348 doi: 10.1016/j.matpr.2015.05.049
|