Citation: | ZHANG Jian-liang, LIU Zheng-jian, JIAO Ke-xin, XU Run-sheng, LI Ke-jiang, WANG Zhen-yang, WANG Cui, WANG Yao-zu, ZHANG Lei. Progress of new technologies and fundamental theory about ironmaking[J]. Chinese Journal of Engineering, 2021, 43(12): 1630-1646. doi: 10.13374/j.issn2095-9389.2021.09.24.007 |
[1] |
Wang Z Y, Zhang J L, Liu Z J, et al. Status, technological progress, and development directions of the ironmaking industry in China. Ironmak Steelmak, 2019, 46(10): 937 doi: 10.1080/03019233.2019.1697111
|
[2] |
Cui L, Ba K M, Li F Q, et al. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Sci Total Environ, 2020, 725: 138292 doi: 10.1016/j.scitotenv.2020.138292
|
[3] |
Wang Y Z, Liu Z J, Zhang J L, et al. Study of stand-support sintering to achieve high oxygen potential in iron ore sintering to enhance productivity and reduce CO content in exhaust gas. J Clean Prod, 2020, 252: 119855 doi: 10.1016/j.jclepro.2019.119855
|
[4] |
張建良, 闞永海, 張士軍, 等. 全活性石灰強化燒結技術在超厚料層中的應用. 鋼鐵, 2020, 55(8):56
Zhang J L, Kan Y H, Zhang S J, et al. Application of full active lime intensified sintering technology in ultra-thick layer. Iron Steel, 2020, 55(8): 56
|
[5] |
Liu Z J, Niu L L, Zhang S J, et al. Comprehensive technologies for iron ore sintering with a bed height of 1000 mm to improve sinter quality, enhance productivity and reduce fuel consumption. ISIJ Int, 2020, 60(11): 2400 doi: 10.2355/isijinternational.ISIJINT-2020-219
|
[6] |
Wang R R, Zhang J L, Liu Z J, et al. Interaction between iron ore and magnesium additives during induration process of pellets. Powder Technol, 2020, 361: 894 doi: 10.1016/j.powtec.2019.11.006
|
[7] |
Chen J W, Jiao Y, Wang X D. Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets. Int J Miner Metall Mater, 2019, 26(7): 822 doi: 10.1007/s12613-019-1795-8
|
[8] |
王兆才, 儲滿生, 唐玨, 等. 還原氣氛和脈石成分對氧化球團還原膨脹的影響. 東北大學學報(自然科學版), 2012, 33(1):94 doi: 10.12068/j.issn.1005-3026.2012.01.023
Wang Z C, Chu M S, Tang J, et al. Effects of reducing atmosphere and gangue composition on reduction swelling of oxidized pellets. J Northeast Univ (Nat Sci)
|
[9] |
Liu Z G, Chu M S, Wang H T, et al. Effect of MgO content in sinter on the softening-melting behavior of mixed burden made from chromium-bearing vanadium-titanium magnetite. Int J Miner Metall Mater, 2016, 23(1): 25 doi: 10.1007/s12613-016-1207-2
|
[10] |
Liu Z J, Cheng Q, Li K J, et al. The interaction of nanoparticulate Fe2O3 in the sintering process: A molecular dynamics simulation. Powder Technol, 2020, 367: 97 doi: 10.1016/j.powtec.2020.03.043
|
[11] |
Wang Y Z, Schenk J, Zhang J L, et al. Novel sintering indexes to evaluate and correlate the crystal characteristics and compressive strength in magnetite pellets. Powder Technol, 2020, 362: 517 doi: 10.1016/j.powtec.2019.12.022
|
[12] |
Wang R R, Zhang J L, Liu Z J, et al. Effect of lime addition on the mineral structure and compressive strength of magnesium containing pellets. Powder Technol, 2020, 376: 222 doi: 10.1016/j.powtec.2020.08.038
|
[13] |
閆伯駿, 邢奕, 路培, 等. 鋼鐵行業燒結煙氣多污染物協同凈化技術研究進展. 工程科學學報, 2018, 40(7):767
Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767
|
[14] |
Iwami Y, Iwase K, Hirosawa T, et al. Development of gas fuel injection technology in iron ore sintering process // 2015-Sustainable Industrial Processing Summit. Antalya, 2015, 3: 183
|
[15] |
周文濤, 胡俊鴿, 郭艷玲. 燒結新技術及其在國內的推廣前景分析. 世界鋼鐵, 2011, 11(6):47 doi: 10.3969/j.issn.1672-9587.2011.06.007
Zhou W T, Hu J G, Guo Y L. New sintering technologies and analysis on prospect of popularization in China. World Iron Steel, 2011, 11(6): 47 doi: 10.3969/j.issn.1672-9587.2011.06.007
|
[16] |
Li K J, Zhang J L, Barati M, et al. Influence of alkaline (Na, K) vapors on carbon and mineral behavior in blast furnace cokes. Fuel, 2015, 145: 202 doi: 10.1016/j.fuel.2014.12.086
|
[17] |
Li K J, Khanna R, Bouhadja M, et al. A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O. Chem Eng J, 2017, 313: 1184 doi: 10.1016/j.cej.2016.11.011
|
[18] |
Li K J, Khanna R, Zhang J L, et al. Molecular dynamics investigation on coke ash behavior in the high-temperature zones of a blast furnace: Influence of alkalis. Energy Fuels, 2017, 31(12): 13466 doi: 10.1021/acs.energyfuels.7b02795
|
[19] |
Li K J, Zhang J L, Liu Y X, et al. Graphitization of coke and its interaction with slag in the hearth of a blast furnace. Metall Mater Trans B, 2016, 47(2): 811 doi: 10.1007/s11663-015-0574-9
|
[20] |
Li K J, Zhang J L, Sun M M, et al. Existence state and structures of extracted coke and accompanied samples from tuyere zone of a large-scale blast furnace. Fuel, 2018, 225: 299 doi: 10.1016/j.fuel.2018.03.155
|
[21] |
Sun M M, Zhang J L, Li K J, et al. Dissolution behaviors of various carbonaceous materials in liquid iron: Interaction between graphite and iron. JOM, 2019, 71(12): 4305 doi: 10.1007/s11837-019-03664-9
|
[22] |
Sun M M, Zhang J L, Li K J, et al. The interfacial behavior between coke and liquid iron: A comparative study on the influence of coke pore, carbon structure and ash. JOM, 2020, 72(6): 2174 doi: 10.1007/s11837-020-04048-0
|
[23] |
Sun M M, Zhang J L, Zhang L, et al. Investigation of the microstructure interaction mechanism of coke-slag-metal in deadman of blast furnace. Ironmak Steelmak, 2021: 1
|
[24] |
Sun M M, Pang K L, Zhang J L, et al. In situ monitoring and dissolution limit of carbon dissolution in hot metal. Steel Res Int, 2021, 92(10): 2100111 doi: 10.1002/srin.202100111
|
[25] |
寧曉鈞, 黨晗, 張建良, 等. 低階煤熱解與蘭炭生產工藝研究進展. 鋼鐵, 2021, 56(1):1
Ning X J, Dang H, Zhang J L, et al. Research progress of low-order coal pyrolysis process and semi-coke production process. Iron Steel, 2021, 56(1): 1
|
[26] |
白鳳強, 王小東. 新興鑄管3號高爐噴吹蘭炭工業試驗. 煉鐵, 2019, 38(3):16
Bai F Q, Wang X D. Commercial test of injecting semi-coke in No.3 BF of Xinxing ductile. Ironmaking, 2019, 38(3): 16
|
[27] |
鞏黎偉. 太鋼高爐噴吹蘭炭煤生產實踐. 煉鐵, 2018, 37(5):16
Gong L W. Semi-coke coal injection practice in Taiyuan steel's BF. Ironmaking, 2018, 37(5): 16
|
[28] |
王海洋, 張建良, 王廣偉, 等. 高爐噴吹提質煤粉的工業試驗. 煉鐵, 2018, 37(1):24
Wang H Y, Zhang J L, Wang G W, et al. Industrial test of BF injected with upgraded pulverized coal. Ironmaking, 2018, 37(1): 24
|
[29] |
Wang G W, Zhang J L, Shao J G, et al. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Convers Manag, 2016, 124: 414 doi: 10.1016/j.enconman.2016.07.045
|
[30] |
王廣偉, 曾宇, 張建良, 等. 鞍鋼高爐噴煤優化搭配研究. 鞍鋼技術, 2021(1):1
Wang G W, Zeng Y, Zhang J L, et al. Study on blending optimization of pulverized coal injection into blast furnace of ansteel. Angang Technol, 2021(1): 1
|
[31] |
王海風, 張春霞, 胡長慶, 等. 鋼鐵企業焦爐煤氣利用的一個重要發展方向. 鋼鐵研究學報, 2008, 20(3):1
Wang H F, Zhang C X, Hu C Q, et al. Important development trends of coke oven gas utilization in steel plant. J Iron Steel Res, 2008, 20(3): 1
|
[32] |
陳永星, 王廣偉, 張建良, 等. 高爐富氧噴吹焦爐煤氣理論研究. 鋼鐵, 2012, 47(2):12
Chen Y X, Wang G W, Zhang J L, et al. Theoretical analysis of injecting coke oven gas with oxygen enriched into blast furnace. Iron Steel, 2012, 47(2): 12
|
[33] |
Kidnay A J, Parrish W R, McCartney D G. Fundamentals of Natural Gas Processing. Boca Raton: CRC Press, 2019
|
[34] |
Ma Y K, Nie B S, He X Q, et al. Mechanism investigation on coal and gas outburst: An overview. Int J Miner Metall Mater, 2020, 27(7): 872 doi: 10.1007/s12613-019-1956-9
|
[35] |
Roy S K, Nayak D, Dash N, et al. Microwave-assisted reduction roasting—magnetic separation studies of two mineralogically different low-grade iron ores. Int J Miner Metall Mater, 2020, 27(11): 1449 doi: 10.1007/s12613-020-1992-5
|
[36] |
王朋, 張建良, 王廣偉, 等. 熱解制備蘆竹半焦基礎性能分析. 中國冶金, 2019, 29(2):12
Wang P, Zhang J L, Wang G W, et al. Analysis of basic characteristics of Arundo donax char prepared by pyrolysis. China Metall, 2019, 29(2): 12
|
[37] |
McKendry P. Energy production from biomass (part 1): Overview of biomass. Bioresour Technol, 2002, 83(1): 37 doi: 10.1016/S0960-8524(01)00118-3
|
[38] |
Wang G W, Zhang J L, Chang W W, et al. Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature. Energy, 2018, 147: 25 doi: 10.1016/j.energy.2018.01.025
|
[39] |
張建良, 林祥海, 孔德文, 等. 生物質焦與煤混合燃燒特性及動力學分析. 北京科技大學學報, 2012, 34(3):348
Zhang J L, Lin X H, Kong D W, et al. Combustion characteristics and kinetic analysis of biomass char and coal blends. J Univ Sci Technol Beijing, 2012, 34(3): 348
|
[40] |
左海濱, 王聰, 張建良, 等. 高爐爐缸耐火材料應用現狀及重要技術指標. 鋼鐵, 2015, 50(2):1
Zuo H B, Wang C, Zhang J L, et al. Application status and important technical indexes of BF hearth refractory. Iron Steel, 2015, 50(2): 1
|
[41] |
焦克新, 張建良, 左海濱, 等. 高爐爐缸黏滯層物相及形成機理. 東北大學學報(自然科學版), 2014, 35(7):987 doi: 10.3969/j.issn.1005-3026.2014.07.017
Jiao K X, Zhang J L, Zuo H B, et al. Composition and formation mechanism of viscous layers in blast furnace hearth. J Northeast Univ (Nat Sci)
|
[42] |
Zuo H B, Wang C, Zhang J L, et al. Oxidation behavior and kinetics of Al2O3–SiC–SiO2–C composite in air. Ceram Int, 2015, 41(7): 9093 doi: 10.1016/j.ceramint.2015.03.307
|
[43] |
劉彥祥, 劉福軍, 張建良, 等. 高爐爐缸用碳復合磚在水蒸氣條件下的氧化行為研究. 硅酸鹽通報, 2017, 36(2):519
Liu Y X, Liu F J, Zhang J L, et al. Oxidation behavior of carbon composite bricks used in blast furnace hearth in steam. Bull Chin Ceram Soc, 2017, 36(2): 519
|
[44] |
Jiao K X, Fan X Y, Zhang J L, et al. Corrosion behavior of alumina-carbon composite brick in typical blast furnace slag and iron. Ceram Int, 2018, 44(16): 19981 doi: 10.1016/j.ceramint.2018.07.265
|
[45] |
劉奇, 程樹森, 趙宏博, 等. 銅鋼復合冷卻壁熱變形分析. 工程科學學報, 2016, 38(1):108
Liu Q, Cheng S S, Zhao H B, et al. Thermal deformation analysis of copper- steel composite staves. Chin J Eng, 2016, 38(1): 108
|
[46] |
Deng Y, Jiao K X, Wu Q C, et al. Damage mechanism of copper stave used in blast furnace. Ironmak Steelmak, 2018, 45(10): 886 doi: 10.1080/03019233.2017.1361625
|
[47] |
Zhang H, Jiao K X, Zhang J L, et al. A new method for evaluating cooling capacity of blast furnace cooling stave. Ironmak Steelmak, 2019, 46(7): 671 doi: 10.1080/03019233.2018.1454388
|
[48] |
張恒, 張建良, 焦克新, 等. 銅鋼復合冷卻壁傳熱能力及熱變形分析. 煉鐵, 2018, 37(1):10
Zhang H, Zhang J L, Jiao K X, et al. Analysis on cooling capacity and thermal deformation of copper-steel composite cooling stave. Ironmaking, 2018, 37(1): 10
|
[49] |
Zhang H, Jiao K X, Zhang J L, et al. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding. Mater Des, 2018, 154: 140 doi: 10.1016/j.matdes.2018.05.027
|
[50] |
Jiang D W, Wang Z Y, Zhang J L, et al. Predictive modelling for contact angle of liquid metals and oxide ceramics by comparing Gaussian process regression with other machine learning methods. Ceram Int, https://doi.org/10.1016/j.ceramint.2021.09.146
|
[51] |
王振陽, 戴建華, 江德文, 等. 結合數據追溯與數值模擬的高爐布料制度優化. 中國冶金, 2020, 30(11):11
Wang Z Y, Dai J H, Jiang D W, et al. Optimization of blast furnace charging system combining data traceability and numerical simulation. China Metall, 2020, 30(11): 11
|
[52] |
Jiang D W, Zhang J L, Wang Z Y, et al. A prediction model of blast furnace slag viscosity based on principal component analysis and K-nearest neighbor regression. JOM, 2020, 72(11): 3908 doi: 10.1007/s11837-020-04360-9
|
[53] |
王振陽, 江德文, 王新東, 等. 基于支持向量回歸與極限學習機的高爐鐵水溫度預測. 工程科學學報, 2021, 43(4):569
Wang Z Y, Jiang D W, Wang X D, et al. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine. Chin J Eng, 2021, 43(4): 569
|
[54] |
劉學藝, 劉祥官, 王文慧. 貝葉斯網絡在高爐鐵水硅含量預測中的應用. 鋼鐵, 2005, 40(3):17 doi: 10.3321/j.issn:0449-749X.2005.03.004
Liu X Y, Liu X G, Wang W H. Application of Bayesian network to predicting silicon content in hot metal. Iron Steel, 2005, 40(3): 17 doi: 10.3321/j.issn:0449-749X.2005.03.004
|
[55] |
Jezierski J, Janerka K. Selected aspects of metallurgical and foundry furnace dust utilization. Pol J Environ Stud, 2011, 20(1): 101
|
[56] |
Liu Z J, Wang G W, Zhang J L, et al. Study on CO2 gasification reactivity and structure characteristics of carbonaceous materials from the corex furnace. Energy Fuels, 2018, 32(5): 6155 doi: 10.1021/acs.energyfuels.8b00072
|
[57] |
Li Y, Zhang J L, Liu Z J, et al. Reduction mechanism of iron oxide briquettes by carbonaceous materials extracted from blast furnace dust. Metall Mater Trans B, 2019, 50(5): 2296 doi: 10.1007/s11663-019-01628-7
|
[58] |
Wang Y Z, Liu Z J, Zhang J L, et al. Advanced converter sludge utilization technologies for the recovery of valuable elements: A review. J Hazard Mater, 2020, 381: 120902 doi: 10.1016/j.jhazmat.2019.120902
|
[59] |
Júnior J H N, Contrucci M A, D'Abreu J C. Tecnored process - high potential in using different kinds of solid fuels. Mat Res, 2005, 8(4): 447 doi: 10.1590/S1516-14392005000400016
|
[60] |
Fisch T, Kesseler K. OxyCup shaft furnace of Thyssen Krupp Steel Strategy for economic recycling of fine grained ferrous and carbonaceous residues // Proceedings of Environmental Seminar. Beijing, 2006: 90
|
[61] |
McClelland J M, Metius G E. Recycling ferrous and nonferrous waste streams with FASTMET. JOM, 2003, 55(8): 30 doi: 10.1007/s11837-003-0101-3
|
[62] |
Kikuchi S, Ito S, Kobayashi I, et al. ITmk3 process. Kobelco Technology Review, 2010, 29: 77
|
[63] |
王飛, 張建良, 毛瑞, 等. 含鐵塵泥自還原團塊固結機理及強度劣化. 中南大學學報(自然科學版), 2016, 47(2):367 doi: 10.11817/j.issn.1672-7207.2016.02.002
Wang F, Zhang J L, Mao R, et al. Bonding mechanism and strength deterioration of self-reducing briquettes made from iron-bearing dust and sludge. J Central South Univ (Sci Technol)
|
[64] |
Wang Y Z, Zhang J L, Liu Z J, et al. Co-utilization of converter sludge-containing dedust wastewater in iron ore sintering to save fresh water, enhance quality and reduce pollution. J Clean Prod, 2019, 234: 157 doi: 10.1016/j.jclepro.2019.06.186
|
[65] |
劉征建, 張建良, 杜誠波, 等. 一種燒結配加煉鋼污泥的處理工藝方法: 中國專利, 201910019375.5. 2020-3-31
Liu Z J, Zhang J L, Du C B, et al. Treatment Technic for Sintering added Steelmaking Sludge: China Patent, 201910019375.5. 2020-3-31
|
[66] |
毛瑞, 張建良, 劉征建, 等. 鋼鐵廠含鐵塵泥球團自還原實驗研究. 東北大學學報(自然科學版), 2015, 36(6):790 doi: 10.3969/j.issn.1005-3026.2015.06.008
Mao R, Zhang J L, Liu Z J, et al. Experimental studies on self-reduction for the pellets made of iron-contained dust and sludge from a steel enterprise. J Northeast Univ (Nat Sci)
|
[67] |
張建良, 王俊英, 劉征建, 等. 一種熔融爐處理鋼鐵廠固體廢料工藝方法: 中國專利, 201310659226.8. 2014-3-5
Zhang J L, Wang J Y, Liu Z J, et al. A Smelting Furnace Steel Mill Solid Waste Treatment Process for: China Patent, 201310659226.8. 2014-3-5
|
[68] |
Zhang X Y, Jiao K X, Zhang J L, et al. A review on low carbon emissions projects of steel industry in the World. J Clean Prod, 2021, 306: 127259 doi: 10.1016/j.jclepro.2021.127259
|
[69] |
Xu R S, Zhang J L, Wang W, et al. Dissolution kinetics of solid fuels used in COREX gasifier and its influence factors. J Iron Steel Res Int, 2018, 25(3): 298 doi: 10.1007/s42243-018-0030-6
|
[70] |
Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. J Therm Anal Calorim, 2016, 123(1): 773 doi: 10.1007/s10973-015-4972-7
|
[71] |
Xu R S, Zhang J L, Wang G W, et al. Devolatilization characteristics and kinetic analysis of lump coal from China COREX3000 under high temperature. Metall Mater Trans B, 2016, 47(4): 2535 doi: 10.1007/s11663-016-0708-8
|
[72] |
王海洋, 張建良, 王廣偉, 等. 高爐除塵灰用于COREX氣化爐噴吹的可行性研究. 鋼鐵, 2017, 52(8):29
Wang H Y, Zhang J L, Wang G W, et al. Feasibility research of injection of BF dust into melter gasifier of COREX. Iron Steel, 2017, 52(8): 29
|
[73] |
周恒, 吳勝利, 寇明銀, 等. COREX豎爐圍管堵塞位置及其演變過程的物理模擬. 工程科學學報, 2018, 40(3):349
Zhou H, Wu S L, Kou M Y, et al. Physical simulation of the position and evolution process of dust accumulation in the bustle pipe of a COREX shaft furnace. Chin J Eng, 2018, 40(3): 349
|
[74] |
王海洋, 張建良, 王廣偉, 等. 八鋼歐冶爐堿金屬及鋅平衡分析. 煉鐵, 2018, 37(4):61
Wang H Y, Zhang J L, Wang G W, et al. Balance analysis of alkali metals and Zinc in European metallurgical furnace of Bayi Steel. Ironmaking, 2018, 37(4): 61
|
[75] |
杜斌斌, 吳勝利, 周恒, 等. COREX豎爐結瘤對物料運動行為影響的DEM模擬. 鋼鐵, 2020, 55(1):12
Du B B, Wu S L, Zhou H, et al. Effect of scaffolding on solid flow in COREX shaft furnace by discrete element simulation method. Iron Steel, 2020, 55(1): 12
|
[76] |
張建良, 張冠琪, 劉征建, 等. 山東墨龍HIsmelt工藝生產運行概況及主要特點. 中國冶金, 2018, 28(5):37
Zhang J L, Zhang G Q, Liu Z J, et al. Production overview and main characteristics of HIsmelt process in Shandong Molong. China Metall, 2018, 28(5): 37
|
[77] |
張建良, 李克江, 張冠琪, 等. 山東墨龍HIsmelt工藝的技術創新及最新生產指標. 煉鐵, 2018, 37(2):56
Zhang J L, Li K J, Zhang G Q, et al. Technological innovation of HIsmelt process in SD molong and latest production index. Ironmaking, 2018, 37(2): 56
|
[78] |
武龍飛, 楊廣慶, 馬保良. HIsmelt熔融還原工藝的發展歷程及改進方向. 河北冶金, 2021(9):8
Wu L F, Yang G Q, Ma B L. Development history and improvement direction of HIsmelt smelting reduction process. Hebei Metall, 2021(9): 8
|
[79] |
Cao C Z, Meng Y J, Yan F X, et al. Analysis on energy efficiency and optimization of HIsmelt process // Energy Technology 2019. San Antonio, 2019: 3
|
[80] |
Ma H B, Jiao K X, Zhang J L. The influence of basicity and TiO2 on the crystallization behavior of high Ti-bearing slags. CrystEngComm, 2020, 22(2): 361 doi: 10.1039/C9CE01695C
|
[81] |
張波, 張建良, 劉興樂, 等. 還原條件對氣基還原中球團金屬化率的影響. 中國冶金, 2014, 24(增刊 1): 166
Zhang B, Zhang J L, Liu X L, et al. Effect of reduction conditions on metallization rate of pellets in gas-based reduction. China Metall, 2014, 24(Suppl 1): 166
|
[82] |
Yi L Y, Huang Z C, Peng H, et al. Action rules of H2 and CO in gas-based direct reduction of iron ore pellets. J Central South Univ, 2012, 19(8): 2291 doi: 10.1007/s11771-012-1274-0
|
[83] |
Li W, Wang N, Fu G Q, et al. Influence of roasting characteristics on gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet with simulated shaft furnace gases. Powder Technol, 2017, 310: 343 doi: 10.1016/j.powtec.2017.01.062
|
[84] |
Li K J, Zhang J L, Liu Z J, et al. Comprehensive evaluation of OxyCup process for steelmaking dust treatment based on calculation of mass balance and heat balance. J Iron Steel Res Int, 2014, 21(6): 575 doi: 10.1016/S1006-706X(14)60089-3
|
[85] |
王桂林, 劉征建, 張建良, 等. 基于OxyCup豎爐處理工藝的塵泥團塊軟熔性能. 中國冶金, 2018, 28(11):61
Wang G L, Liu Z J, Zhang J L, et al. Soft-melting property of dust briquettes based on OxyCup shaft furnace. China Metall, 2018, 28(11): 61
|
[86] |
Jiang C H, Xiong Z X, Bu Y S, et al. Study on the structure and properties of high-calcium coal ash in the high-temperature zone of a blast furnace: A molecular dynamics simulation investigation. JOM, 2020, 72(7): 2713 doi: 10.1007/s11837-020-04154-z
|
[87] |
Jiang C H, Li K J, Zhang J L, et al. Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags: A molecular dynamics simulation. J Non Cryst Solids, 2018, 502: 76 doi: 10.1016/j.jnoncrysol.2018.06.043
|
[88] |
Jiang C H, Li K J, Zhang J L, et al. Molecular dynamics simulation on the effect of MgO/Al2O3 ratio on structure and properties of blast furnace slag under different basicity conditions. Metall Mater Trans B, 2019, 50(1): 367 doi: 10.1007/s11663-018-1450-1
|
[89] |
Jiang C H, Li K J, Zhang J L, et al. The effect of CaO(MgO) on the structure and properties of aluminosilicate system by molecular dynamics simulation. J Mol Liq, 2018, 268: 762 doi: 10.1016/j.molliq.2018.07.123
|
[90] |
Jiang C H, Li K J, Zhang J L, et al. The effect of CaO and MgO on the structure and properties of coal ash in the blast furnace: A molecular dynamics simulation and thermodynamic calculation. Chem Eng Sci, 2019, 210: 115226 doi: 10.1016/j.ces.2019.115226
|
[91] |
Bi Z S, Li K J, Jiang C H, et al. Performance and transition mechanism from acidity to basicity of amphoteric oxides (Al2O3 and B2O3) in SiO2?CaO?Al2O3?B2O3 system: A molecular dynamics study. Ceram Int, 2021, 47(9): 12252 doi: 10.1016/j.ceramint.2021.01.074
|
[92] |
Bi Z S, Li K J, Jiang C H, et al. Effects of B2O3 on the structure and properties of blast furnace slag by molecular dynamics simulation. J Non Cryst Solids, 2021, 551: 120412 doi: 10.1016/j.jnoncrysol.2020.120412
|
[93] |
Bi Z S, Li K J, Jiang C H, et al. Effects of amphoteric oxide (Al2O3 and B2O3) on the structure and properties of SiO2?CaO melts by molecular dynamics simulation. J Non Cryst Solids, 2021, 559: 120687 doi: 10.1016/j.jnoncrysol.2021.120687
|
[94] |
Jiang C H, Li K J, Zhang J L, et al. Structural characteristics of liquid iron with various carbon contents based on atomic simulation. J Mol Liq, 2021, 342: 116957 doi: 10.1016/j.molliq.2021.116957
|
[95] |
Jiang C H, Zhang J L, Li K J, et al. Influence of graphite crystalline orientation on the carbon dissolution reaction in liquid iron: A ReaxFF molecular dynamics simulation study. J Mol Liq, 2021, 335: 115688 doi: 10.1016/j.molliq.2021.115688
|
[96] |
Jiang C H, Xiong Z X, Li K J, et al. Molecular dynamics simulation study on the wetting behavior of liquid iron and graphite. J Mol Liq, 2020, 311: 113350 doi: 10.1016/j.molliq.2020.113350
|
[97] |
Li K J, Khanna R, Zhang H, et al. Thermal behaviour during initial stages of graphene oxidation: Implications for reaction kinetics and mechanisms. Chem Eng J, 2021, 421: 129742 doi: 10.1016/j.cej.2021.129742
|
[98] |
Li K J, Khanna R, Zhang H, et al. Thermal behaviour, kinetics and mechanisms of CO2 interactions with graphene: An atomic scale reactive molecular dynamic study. Chem Eng J, 2021, 425: 131529 doi: 10.1016/j.cej.2021.131529
|
[99] |
Tonomura S. Outline of course 50. Energy Procedia, 2013, 37: 7160 doi: 10.1016/j.egypro.2013.06.653
|