<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
WANG Ya-jie, ZUO Hai-bin, WANG Jing-xiu, BAI Kai-kai, CHEN Jian-sheng, RONG Tao. Research status and prospect of clean and high-value utilization of HyperCoal in China[J]. Chinese Journal of Engineering, 2021, 43(12): 1750-1760. doi: 10.13374/j.issn2095-9389.2021.09.15.006
Citation: WANG Ya-jie, ZUO Hai-bin, WANG Jing-xiu, BAI Kai-kai, CHEN Jian-sheng, RONG Tao. Research status and prospect of clean and high-value utilization of HyperCoal in China[J]. Chinese Journal of Engineering, 2021, 43(12): 1750-1760. doi: 10.13374/j.issn2095-9389.2021.09.15.006

Research status and prospect of clean and high-value utilization of HyperCoal in China

doi: 10.13374/j.issn2095-9389.2021.09.15.006
More Information
  • China is the world’s largest coal-producing country; coal is very important to Chinese energy structure. However, the excess use of coal has caused serious environmental pollution and the greenhouse effect. Therefore, an indispensable way to solve this coal utilization problem is the development of clean coal technology, which is also essential for the sustainable development of China’s economy. HyperCoal (HPC), a coal derivative obtained by solvent extraction with the properties of low ash content, low moisture, high calorific value, high reactivity, good thermoplasticity, and environmental friendliness, has excellent application in clean coal technology. In terms of combustion, HPC can be used as an advanced fuel for fuel cell and chemical cycle combustion for improving combustion efficiency. Regarding gasification and liquefaction, HPC can be used in the integrated coal gasification combined cycle technology to reduce catalyst loss and equipment damage. In terms of coking coal blending, HPC can be used as an additive in the coking process and a binder for hot-pressed coal briquettes, which can increase the strength of coke and replace scarce coking coal resources such as fat and main coking coals. In the preparation of high-grade carbon materials, HPC can be used to prepare the pitch-based carbon fiber, activated carbon, and graphite electrodes, which considerably improves the performance of carbon materials. Therefore, HPC is valuable in the clean and high-value utilization of coal. On this basis, this paper pointed out the current research status of HPC application in China and elaborated the breakthrough with considerable research results of our team concerning coking coal blending and the preparation of crystalline graphite. However, currently, there are still some problems in the spread and the application of HPC. In the future, large-scale production issues need to be urgently solved, and in-depth research on the extraction mechanism and the action mechanism of HPC should be conducted.

     

  • loading
  • [1]
    王永英. 我國燃煤大氣污染物控制現狀及對策研究. 煤炭經濟研究, 2019, 39(8):66

    Wang Y Y. Research on current situation and countermeasures of coal-fired air pollutants control in China. Coal Econ Res, 2019, 39(8): 66
    [2]
    趙利軍. 煤炭除灰技術的現狀和發展. 能源科技, 2021, 19(1):83

    Zhao L J. Current situation of coal deashing technology and its development in future. Energy Sci Technol, 2021, 19(1): 83
    [3]
    張帥. 預處理在低階煤制備無灰煤中的應用[學位論文]. 唐山: 華北理工大學, 2016

    Zhang S. The Application of Pre-Treatment in Producing Ash-Free Coal by Low Rank Coals [Dissertation]. Tangshan: North China University of Science and Technology, 2016
    [4]
    宋璇, 彭垠, 鞏林盛. 化學脫灰在稀缺煉焦煤中煤再選領域的研究與前景探討. 煤炭技術, 2020, 39(8):202

    Song X, Peng Y, Gong L S. Research and prospect in coal reprocessing field of chemical deashing in rare coking coal. Coal Technol, 2020, 39(8): 202
    [5]
    Rahman M, Pudasainee D, Gupta R. Review on chemical upgrading of coal: Production processes, potential applications and recent developments. Fuel Process Technol, 2017, 158: 35 doi: 10.1016/j.fuproc.2016.12.010
    [6]
    Okuyama N, Komatsu N, Shigehisa T, et al. Hyper-coal process to produce the ash-free coal. Fuel Process Technol, 2004, 85(8-10): 947 doi: 10.1016/j.fuproc.2003.10.019
    [7]
    楊建校, 魏文杰, 祁勇, 等. 無灰煤高效利用研究進展. 煤炭學報, 2020, 45(9):3301

    Yang J X, Wei W J, Qi Y, et al. Research progress on hyper-coal for efficient utilization. J China Coal Soc, 2020, 45(9): 3301
    [8]
    樊麗華, 梁英華, 侯彩霞. 無灰煤的制備及應用研究進展. 煤炭科學技術, 2011, 39(3):120

    Fan L H, Liang Y H, Hou C X. Research progress on ash-free coal preparation and application. Coal Sci Technol, 2011, 39(3): 120
    [9]
    Kim J P, Choi H K, Chang Y J, et al. Feasibility of using ash-free coal in a solid-oxide-electrolyte direct carbon fuel cell. Int J Hydrog Energy, 2012, 37(15): 11401 doi: 10.1016/j.ijhydene.2012.04.162
    [10]
    Dudek M, Tomczyk P, Socha R, et al. Use of ash-free “Hyper-coal” as a fuel for a direct carbon fuel cell with solid oxide electrolyte. Int J Hydrog Energy, 2014, 39(23): 12386 doi: 10.1016/j.ijhydene.2014.04.057
    [11]
    Ju H, Eom J, Lee J K, et al. Durable power performance of a direct ash-free coal fuel cell. Electrochimica Acta, 2014, 115: 511 doi: 10.1016/j.electacta.2013.10.124
    [12]
    王琦, 程易, 吳昌寧, 等. 新型節能CO2零排放工藝: 化學循環燃燒技術. 化學進展, 2008, 20(10):1612

    Wang Q, Cheng Y, Wu C N, et al. A novel energy conservation process for zero emission of carbon dioxide: Chemical looping combustion. Prog Chem, 2008, 20(10): 1612
    [13]
    Shabani A, Rahman M, Pudasainee D, et al. Evaluation of ash-free coal for chemical looping combustion - part I: Thermogravimetric single cycle study and the reaction mechanism. Can J Chem Eng, 2017, 95(4): 623 doi: 10.1002/cjce.22721
    [14]
    Shabani A, Rahman M, Pudasainee D, et al. Evaluation of ash-free coal for chemical looping combustion - part II: Thermogravimetric multi-cycle performance. Can J Chem Eng, 2017, 95(5): 832 doi: 10.1002/cjce.22713
    [15]
    Liu H W, Ni W D, Li Z, et al. Strategic thinking on IGCC development in China. Energy Policy, 2008, 36(1): 1 doi: 10.1016/j.enpol.2007.08.034
    [16]
    Kong Y J, Kim J, Chun D, et al. Comparative studies on steam gasification of ash-free coals and their original raw coals. Int J Hydrog Energy, 2014, 39(17): 9212 doi: 10.1016/j.ijhydene.2014.04.054
    [17]
    Park S H, Chung S W, Lee S K, et al. Thermo-economic evaluation of 300 MW class integrated gasification combined cycle with ash free coal (AFC) process. Appl Therm Eng, 2015, 89: 843 doi: 10.1016/j.applthermaleng.2015.06.066
    [18]
    Sharma A, Kawashima H, Saito I, et al. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed HyperCoals and coals. Energy Fuels, 2009, 23(4): 1888 doi: 10.1021/ef800817h
    [19]
    Sharma A, Saito I, Takanohashi T. Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal. Energy Fuels, 2009, 23(10): 4887 doi: 10.1021/ef900461w
    [20]
    Sharma A, Takanohashi T, Morishita K, et al. Low temperature catalytic steam gasification of HyperCoal to produce H2 and synthesis gas. Fuel, 2008, 87(4-5): 491 doi: 10.1016/j.fuel.2007.04.015
    [21]
    Sharma A, Takanohashi T, Saito I. Effect of catalyst addition on gasification reactivity of HyperCoal and coal with steam at 775-700 ℃. Fuel, 2008, 87(12): 2686 doi: 10.1016/j.fuel.2008.03.010
    [22]
    Sharma A, Takanohashi T. Controlling the H2/CO ratio of the synthesis gas in a single step by catalytically gasifying coal in a steam and carbon dioxide mixed environment at low temperatures. Energy Fuels, 2010, 24(3): 1745 doi: 10.1021/ef901178d
    [23]
    Koyano K, Takanohashi T, Saito I. Catalytic hydrogenation of HyperCoal (ashless coal) and reusability of catalyst. Energy Fuels, 2009, 23(7): 3652 doi: 10.1021/ef900135r
    [24]
    Zou D H, Yang X, Shui H F, et al. Liquefaction of thermal extracts from co-thermal dissolution of a sub-bituminous coal with lignin and reusability of Ni?Mo?S/Al2O3 catalyst. J Fuel Chem Technol, 2019, 47(1): 23 doi: 10.1016/S1872-5813(19)30004-0
    [25]
    Takanohashi T, Shishido T, Saito I. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends. Energy Fuels, 2008, 22(3): 1779 doi: 10.1021/ef7007375
    [26]
    Sekine Y, Fujimoto H. Evaluation of the structure and strength of coke with HPC binder under various preparation conditions. ISIJ Int, 2019, 59(8): 1437 doi: 10.2355/isijinternational.ISIJINT-2018-772
    [27]
    Sekine Y, Sumomozawa F, Shishido T. Coking technology using heavy oil residue and hyper coal. ISIJ Int, 2014, 54(11): 2446 doi: 10.2355/isijinternational.54.2446
    [28]
    Hao L F, Feng P, Song W L, et al. Modification performance of Hypercoal as an additive on co-carbonization of coal. J Fuel Chem Technol, 2012, 40(9): 1025 doi: 10.1016/S1872-5813(12)60037-1
    [29]
    Sharma A, Sakimoto N, Anraku D, et al. Physical and chemical characteristics of coal-binder interface and carbon microstructure near interface. ISIJ Int, 2014, 54(11): 2470 doi: 10.2355/isijinternational.54.2470
    [30]
    Zhao J, Zuo H B, Wang G W, et al. Improving the coke property through adding HPC extracted from the mixture of low-rank coal and biomass. Energy Fuels, 2020, 34(2): 1802 doi: 10.1021/acs.energyfuels.9b03459
    [31]
    Wang Y J, Zuo H B, Zhao J, et al. Using HyperCoal to prepare metallurgical coal briquettes via hot-pressing. Int J Miner Metall Mater, 2019, 26(5): 547 doi: 10.1007/s12613-019-1763-3
    [32]
    Baker D A, Rials T G. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci, 2013, 130(2): 713 doi: 10.1002/app.39273
    [33]
    Yang J X, Nakabayashi K, Miyawaki J, et al. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil. J Ind Eng Chem, 2016, 34: 397 doi: 10.1016/j.jiec.2015.11.026
    [34]
    Yang J X, Nakabayashi K, Miyawaki J, et al. Preparation of pitch based carbon fibers using Hyper-coal as a raw material. Carbon, 2016, 106: 28 doi: 10.1016/j.carbon.2016.05.019
    [35]
    Shimanoe H, Mashio T, Nakabayashi K, et al. Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber. Carbon, 2020, 158: 922 doi: 10.1016/j.carbon.2019.11.082
    [36]
    Li X, Zhu X Q, Okuda K, et al. Preparation of carbon fibers from low-molecular-weight compounds obtained from low-rank coal and biomass by solvent extraction. New Carbon Mater, 2017, 32(1): 41 doi: 10.1016/S1872-5805(17)60106-9
    [37]
    Watanabe H, Tsumura T, Toyoda M. EDLC characteristics of carbon materials prepared from coal extract. Electrochemistry, 2020, 88(3): 119 doi: 10.5796/electrochemistry.20-63011
    [38]
    Zhao X Y, Huang S S, Cao J P, et al. HyperCoal-derived porous carbons with alkaline hydroxides and carbonate activation for electric double-layer capacitors. Fuel Process Technol, 2014, 125: 251 doi: 10.1016/j.fuproc.2014.04.012
    [39]
    Zhao X Y, Huang S S, Cao J P, et al. KOH activation of a HyperCoal to develop activated carbons for electric double-layer capacitors. J Anal Appl Pyrolysis, 2014, 105: 116 doi: 10.1016/j.jaap.2013.10.010
    [40]
    樊麗華, 王曉柳, 侯彩霞, 等. 褐煤基活性炭和無灰煤基活性炭性能對比研究. 功能材料, 2017, 48(1):1244 doi: 10.3969/j.issn.1001-9731.2017.01.044

    Fan L H, Wang X L, Hou C X, et al. Research on performance comparison of lignite-activated carbon and hypercoal-activated carbon. J Funct Mater, 2017, 48(1): 1244 doi: 10.3969/j.issn.1001-9731.2017.01.044
    [41]
    Xu L J, Fan L H, Hou C X, et al. Effect of adding microwave absorber on structures and properties of hypercoal-based activated carbons. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(3): 488 doi: 10.1007/s11595-020-2283-8
    [42]
    安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22

    An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
    [43]
    Zhu Z L, Zuo H B, Li S J, et al. A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage. J Mater Chem A, 2019, 7(13): 7533 doi: 10.1039/C8TA12412D
    [44]
    郭秉霖, 侯彩霞, 樊麗華, 等. 萃取溫度對無灰煤結構及煤基活性炭電化學性能的影響. 無機化學學報, 2018, 34(9):1615 doi: 10.11862/CJIC.2018.201

    Guo B L, Hou C X, Fan L H, et al. Effect of extraction temperature on hyper-coal structure and electrochemistry of coal-based activated carbon. Chin J Inorg Chem, 2018, 34(9): 1615 doi: 10.11862/CJIC.2018.201
    [45]
    樊麗華, 杜敬文, 梁英華, 等. 無灰煤的熱解行為及其在配煤中的添加效果. 煤炭科學技術, 2017, 45(3):185

    Fan L H, Du J W, Liang Y H, et al. Pyrolysis behavior of hypercoal and its adding effect in blending coal. Coal Sci Technol, 2017, 45(3): 185
    [46]
    Shui H F, He F, Wu Y, et al. Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends. Energy Fuels, 2015, 29(3): 1558 doi: 10.1021/ef502736a
    [47]
    Zhao J, Zuo H B, Wang J S, et al. The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP. Int J Miner Metall Mater, 2019, 26(12): 1512 doi: 10.1007/s12613-019-1872-z
    [48]
    Ma Z, Zhuang Y C, Deng Y M, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries. J Power Sources, 2018, 376: 91
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)

    Article views (1545) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频