<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LI Gang, PAN Wei-jie, LI Min, ZHU Li-long, HE Sheng-ping. Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux[J]. Chinese Journal of Engineering, 2023, 45(2): 234-242. doi: 10.13374/j.issn2095-9389.2021.09.07.003
Citation: LI Gang, PAN Wei-jie, LI Min, ZHU Li-long, HE Sheng-ping. Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux[J]. Chinese Journal of Engineering, 2023, 45(2): 234-242. doi: 10.13374/j.issn2095-9389.2021.09.07.003

Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux

doi: 10.13374/j.issn2095-9389.2021.09.07.003
More Information
  • Corresponding author: E-mail: heshp@cqu.edu.cn
  • Received Date: 2021-09-07
    Available Online: 2022-01-20
  • Publish Date: 2023-02-01
  • Aluminum oxide is a common component in mold powder and is a kind of amphoteric oxide. It shows the characteristics of acid oxide under high-alkalinity conditions and of alkaline oxide under low-alkalinity conditions. In general, adding Al2O3 to the traditional CaO–SiO2-based mold flux will increase the viscosity and melting point of the mold flux, which will consequently reduce the mold flux’s ability to adsorb inclusions. In addition, as the content of Al2O3 in the slag increases, the solidification temperature of the slag can be reduced, thereby improving the lubricating ability of the mold flux. At present, the research on the crystallization performance of Al2O3 on mold fluxes mainly focuses on low-reactivity or non-reactive mold fluxes for high-aluminum steel and high-titanium steel. Relevant studies have shown that Al2O3 in low-reactivity or non-reactive mold fluxes can increase the crystallization incubation time of the mold flux, reduce the critical cooling rate of the flux, and inhibit the crystallization process of the flux. In mold powder with low to medium alkalinity content (R = 1.2–1.5) or new CaO–Al2O3-based low-reactivity mold powder, the addition of Al2O3 will increase the viscosity of the slag and melting point and decrease (or increase) the solidification temperature and crystallization performance. In recent years, ultrahigh-alkalinity mold powder (R = 1.65–1.85) has been successfully applied in peritectic steel continuous casting mold powder, effectively coordinating the contradiction between the mold powder heat transfer and lubrication function. However, there is no relevant report on the influence of Al2O3 on the performance of mold flux under ultrahigh-alkalinity conditions. In this study, an ultra-high-alkalinity mold flux (comprehensive alkalinity R = 1.75) is taken as the research object, and the influence of Al2O3 on the flow, melting, and solidification characteristics of the mold flux is analyzed. The research results show that as Al2O3 increases, the viscosity and melting temperature increase, and the transition temperature decreases. Particularly, with an average increase of 1% Al2O3, the melting temperature of the mold flux will increase by approximately 5 ℃, and the turning temperature will decrease by approximately 12 ℃. In addition, as the Al2O3 content in the slag increases by 1%, the starting crystallization temperature drops by approximately 11 °C on average. The average crystallization rate decreases with the increase in Al2O3 in the slag, and Al2O3 has a significant effect on the crystallization rate. Moreover, with the increase in the content of Al2O3 in the slag, the proportion of crystals in the crystalline phase of the mold slag gradually decreases, but the type of crystals remains unchanged.

     

  • loading
  • [1]
    張少達. 高錳高鋁鋼保護渣潤滑、結晶和輻射傳熱性能的研究[學位論文]. 重慶大學, 2019

    Zhang S D. Study on Properties of Lubrication, Crystallization and Radiation Heat Transfer of Continuous Casting Mold Fluxes for High-Mn and High-Al Steels [Dissertation]. Chongqing: Chongqing University, 2019
    [2]
    張江. Al2O3含量對CaO?SiO2?Al2O3?CaF2?Na2O保護渣結晶性能的影響. 鑄造技術, 2011, 32(4):511

    Zhang J. Influence of the Al2O3 content on the crystallization properties of CaO?SiO2?Al2O3?CaF2?Na2O mold fluxes. Foundry Technol, 2011, 32(4): 511
    [3]
    盧艷青, 張國棟, 姜茂發, 等. 連鑄保護渣吸附Al2O3夾雜能力的研究. 東北大學學報(自然科學版), 2010, 31(4):539 doi: 10.3969/j.issn.1005-3026.2010.04.021

    Lu Y Q, Zhang G D, Jiang M F, et al. Study on adsorbility of mould flux to Al2O3 inclusion. J Northeast Univ Nat Sci, 2010, 31(4): 539 doi: 10.3969/j.issn.1005-3026.2010.04.021
    [4]
    王玉, 楊吉春. 堿度和Al2O3對中碳鋼寬厚板連鑄結晶器保護渣粘度和熔化溫度的影響. 內蒙古科技大學學報, 2012, 31(4):320

    Wang Y, Yang J C. Effect of basicity and Al2O3 content on viscosity and melting temperature of mold flux of medium carbon steel in wide and heavy plate continuous casting. J Inn Mong Univ Sci Technol, 2012, 31(4): 320
    [5]
    Sridhar S, Mills K C, Afrange O D C, et al. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmak Steelmak, 2000, 27(3): 238 doi: 10.1179/030192300677534
    [6]
    He Y M, Wang Q, Hu B, et al. Application of high-basicity mould fluxes for continuous casting of large steel slabs. Ironmak Steelmak, 2016, 43(8): 588 doi: 10.1080/03019233.2016.1139224
    [7]
    龍瀟. 包晶鋼連鑄保護渣渣膜凝固結構特征研究[學位論文]. 重慶: 重慶大學, 2018

    Long X. Study on Structure Characteristics of Solid Slag Films of Mold Fluxes for Peritectic Steel Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2018
    [8]
    Zhang S D, Li M, Zhu L L, et al. Effect of substituting Na2O for SiO2 on the non-isothermal crystallization behavior of CaO?BaO?Al2O3 based mold fluxes for casting high Al steels. Ceram Int, 2019, 45(9): 11296 doi: 10.1016/j.ceramint.2019.02.206
    [9]
    朱禮龍. 包晶鋼用超高堿度保護渣的理論研究和應用[學位論文]. 重慶: 重慶大學, 2018

    Zhu L L. Theoretical Research and Application of Ultrahigh-Basicity Mold Fluxes for Peritectic Steel [Dissertation]. Chongqing: Chongqing University, 2018
    [10]
    Jia B, Li M, Wang S, et al. Molecular dynamic simulation of the structure and viscosity properties of CaO–SiO2–Al2O3 slags with low basicity//The 10th Pacific Rim International Conference on Advanced Materials and Processing. Xi'an, 2019
    [11]
    Diao J, Zhou W, Gu P. Competitive growth of crystals in vanadium–chromium slag. CrystEngComm, 2016, 18(33): 6272 doi: 10.1039/C6CE01087C
    [12]
    舒俊, 金山同, 張麗, 等. 冷卻速率對連鑄保護渣結晶性能的影響. 北京科技大學學報, 2001, 23(5):421 doi: 10.3321/j.issn:1001-053X.2001.05.009

    Shu J, Jin S T, Zhang L, et al. Influence of cooling rate on crystallization properties of mold fluxes. J Univ Sci Technol Beijing, 2001, 23(5): 421 doi: 10.3321/j.issn:1001-053X.2001.05.009
    [13]
    舒俊, 金山同, 張麗, 等. 連鑄結晶器保護渣結晶溫度. 北京科技大學學報, 2000, 22(6):508 doi: 10.3321/j.issn:1001-053X.2000.06.006

    Shu J, Jin S T, Zhang L, et al. Crystallization temperature of continuous casting mold fluxes. J Univ Sci Technol Beijing, 2000, 22(6): 508 doi: 10.3321/j.issn:1001-053X.2000.06.006
    [14]
    Shi C B, Seo M D, Wang H, et al. Crystallization kinetics and mechanism of CaO–Al2O3-based mold flux for casting high-aluminum TRIP steels. Metall Mater Trans B, 2015, 46(1): 345 doi: 10.1007/s11663-014-0180-2
    [15]
    Lanyi M D, Rosa C J. Viscosity of casting fluxes used during continuous casting of steel. Metall Trans B, 1981, 12(2): 287 doi: 10.1007/BF02654462
    [16]
    Mizuno H, Esaka H, Shinozuka K, et al. Analysis of the crystallization of mold flux for continuous casting of steel. ISIJ Int, 2008, 48(3): 277 doi: 10.2355/isijinternational.48.277
    [17]
    Lu B X, Wang W L. Effects of fluorine and BaO on the crystallization behavior of lime–alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2015, 46(2): 852 doi: 10.1007/s11663-014-0285-7
    [18]
    Long X, He S P, Xu J F, et al. Properties of high basicity mold fluxes for peritectic steel slab casting. J Iron Steel Res Int, 2012, 19(7): 39 doi: 10.1016/S1006-706X(12)60111-3
    [19]
    Nakada H, Nagata K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ Int, 2006, 46(3): 441 doi: 10.2355/isijinternational.46.441
    [20]
    Park J Y, Ryu J W, Sohn I. In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B, 2014, 45(4): 1186 doi: 10.1007/s11663-014-0087-y
    [21]
    Mutale C T, Cramb A W, Claudon T. Observation of the crystallization hehavior of a slag contain 46 wt pct CaO, 46 wt pct SiO2, 6 wt pct Al2O3, and 2 wt pct Na2O using the double hot thermocouple technique. Metall Mater Trans B, 2005, 36(3): 417 doi: 10.1007/s11663-005-0072-6
    [22]
    Zhu L L, Wang Q, Wang Q Q, et al. The relationship between crystallization and break temperature of mould flux. Ironmak Steelmak, 2019, 46(9): 865 doi: 10.1080/03019233.2018.1552773
    [23]
    Miodownik A P, Saunders N. Modelling of materials properties in duplex stainless steels. Mater Sci Technol, 2002, 18(8): 861 doi: 10.1179/026708302225004694
    [24]
    Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on The crystallization behavior of Lime-Alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6
    [25]
    Zhu L L, Wang Q, Wang Q Q, et al. In situ observation of crystallization of mold slag using a digital optical microscope in an infrared furnace. J Am Ceram Soc, 2018: jace.16085 doi: 10.1111/jace.16085
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (464) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频