Citation: | PENG Sheng-pan, MA Zi-ran, MA Jing, WANG Hong-yan, AO Zhi-min, LI Yong-long, WANG Bao-dong. Sintering resistance strategy of γ-Al2O3 loaded with precious metals[J]. Chinese Journal of Engineering, 2023, 45(2): 243-252. doi: 10.13374/j.issn2095-9389.2021.08.30.003 |
[1] |
劉玉煒, 林興軍. 煤制天然氣排放廢氣協同處理方案. 當代化工研究, 2017(12):66 doi: 10.3969/j.issn.1672-8114.2017.12.041
Liu Y W, Lin X J. Co-processing scheme of waste gas discharged from coal-to-natural gas. Mod Chem Res, 2017(12): 66 doi: 10.3969/j.issn.1672-8114.2017.12.041
|
[2] |
姜成旭, 孫曉紅. 碎煤加壓氣化爐配套低溫甲醇洗裝置CO2尾氣VOCs治理. 煤化工, 2018, 46(6):1 doi: 10.3969/j.issn.1005-9598.2018.06.001
Jiang C X, Sun X H. VOCs treatment of CO2 tail gas from rectisol unit for crushed coal pressurized gasifier. Coal Chem Ind, 2018, 46(6): 1 doi: 10.3969/j.issn.1005-9598.2018.06.001
|
[3] |
王煒月, 趙培培, 金凌云, 等. 揮發性有機物燃燒催化劑的研究進展. 化工進展, 2020, 39(增刊2): 185
Wang W Y, Zhao P P, Jin L Y, et al. Recent advances in catalysts for volatile organic compounds combustion. Chem Ind Eng Prog, 2020, 39(Suppl 2): 185
|
[4] |
Xu S C, Jaegers N R, Hu W D, et al. High-field one-dimensional and two-dimensional 27Al magic-angle spinning nuclear magnetic resonance study of θ-, δ-, and γ-Al2O3 dominated aluminum oxides: Toward understanding the Al sites in γ-Al2O3. ACS Omega, 2021, 6(5): 4090 doi: 10.1021/acsomega.0c06163
|
[5] |
Hansen T W, Delariva A T, Challa S R, et al. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc Chem Res, 2013, 46(8): 1720
|
[6] |
Almohamadi H, Alamoudi M A, Smith K J. Washcoat overlayer for improved activity and stability of natural gas vehicle monolith catalysts operating in the presence of H2O and SO2. Ind Eng Chem Res, 2021, 60(9): 3572 doi: 10.1021/acs.iecr.1c00068
|
[7] |
葉瑞倫, 方永漢. 無機材料物理化學. 北京: 中國建筑工業出版社, 1986
Ye R L, Fang Y H. Physical Chemistry of Inorganic Materials. Beijing: China Architecture & Building Press, 1986
|
[8] |
張靜靜, 孫杰, 李吉剛, 等. Au/CeO2催化劑儲存失活性研究. 功能材料, 2017, 48(11):11021
Zhang J J, Sun J, Li J G, et al. Study on deactivation of nanosized Au/CeO2 catalysts in storage. J Funct Mater, 2017, 48(11): 11021
|
[9] |
鄭婷婷, 何俊俊, 吳樂剛, 等. 汽車尾氣三效催化劑的失活//第八屆全國工業催化技術及應用年會. 西安, 2011:6
Zheng T T, He J J, Wu L G, et al. Deactivation of three-way catalyst for automobile exhaust// Proceedings of the 8th National Industrial Catalysis Technology and Application Annual Conference. Xi’an, 2011: 6
|
[10] |
Kunwar D, Carrillo C, Xiong H F, et al. Investigating anomalous growth of platinum particles during accelerated aging of diesel oxidation catalysts. Appl Catal B Environ, 2020, 266: 118598 doi: 10.1016/j.apcatb.2020.118598
|
[11] |
蔣斌峰, 周楠, 韓文鋒, 等. Pd/AC催化劑在加氫脫氯反應中的失活原因及再生. 化工生產與技術, 2019, 25(3):8 doi: 10.3969/j.issn.1006-6829.2019.03.002
Jang B F, Zhou N, Han W F, et al. Deactivation and regeneration of Pd/AC catalyst in hydrodechlorination reaction. Chem Prod Technol, 2019, 25(3): 8 doi: 10.3969/j.issn.1006-6829.2019.03.002
|
[12] |
徐鑫, 于雷, 韓甲業. Pd基負載型通風瓦斯燃燒催化劑的失活和再生機理研究. 中國煤層氣, 2019, 16(3):3
Xu X, Yu L, Han J Y. Deactivation and regeneration mechanism of Pd-based supported catalysts for ventilation air methane. China Coalbed Methane, 2019, 16(3): 3
|
[13] |
范長頡, 李鑫, 許西慶, 等. 初始粉體狀態對氧化鋁/氧化鋯納米陶瓷燒結性能的影響. 重慶大學學報, 2019, 42(12):67 doi: 10.11835/j.issn.1000-582X.2019.12.008
Fan C J, Li X, Xu X Q, et al. Effects of starting powders on sinterability of Al2O3–ZrO2 nanoceramics. J Chongqing Uni, 2019, 42(12): 67 doi: 10.11835/j.issn.1000-582X.2019.12.008
|
[14] |
Paglia G, Buckley C E, Rohl A L, et al. Boehmite derived γ-alumina system. 1. structural evolution with temperature, with the identification and structural determination of a new transition phase, γ'-alumina. Chem Mater, 2004, 16(2): 220
|
[15] |
Seong H, Choi S, Matusik K E, et al. 3D pore analysis of gasoline particulate filters using X-ray tomography: impact of coating and ash loading. J Mater Sci, 2019, 54(8): 6053 doi: 10.1007/s10853-018-03310-w
|
[16] |
Seong H, Choi S, Lee S, et al. Deactivation of three-way catalysts coated within gasoline particulate filters by engine-oil-derived chemicals. Ind Eng Chem Res, 2019, 58(25): 10724 doi: 10.1021/acs.iecr.9b00342
|
[17] |
Schedlbauer T, Lott P, Casapu M, et al. Impact of the support on the catalytic performance, inhibition effects and SO2 poisoning resistance of Pt-based formaldehyde oxidation catalysts. Top Catal, 2019, 62(1): 198
|
[18] |
Wilburn M S, Epling W S. Formation and decomposition of sulfite and sulfate species on Pt/Pd catalysts: An SO2 oxidation and sulfur exposure study. ACS Catal, 2019, 9(1): 640 doi: 10.1021/acscatal.8b03529
|
[19] |
Wilburn M S, Epling W S. SO2 adsorption and desorption characteristics of Pd and Pt catalysts: Precious metal crystallite size dependence. Appl Catal A Gen, 2017, 534: 85 doi: 10.1016/j.apcata.2017.01.015
|
[20] |
劉強, 盧文新, 劉佳, 等. 鹵代揮發性有機物催化燃燒技術研究進展. 化肥設計, 2020, 58(2):10 doi: 10.3969/j.issn.1004-8901.2020.02.003
Liu Q, Lu W X, Liu J, et al. Research progress in catalytic combustion technologies of halogenated volatile organic compounds (VOCs). Chem Fertil Des, 2020, 58(2): 10 doi: 10.3969/j.issn.1004-8901.2020.02.003
|
[21] |
Wu Q Q, Yan J R, Jiang M X, et al. Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane. Appl Catal B Environ, 2021, 286(5): 119949
|
[22] |
Chen J J, Wu Y, Hu W, et al. Insights into the role of Pt on Pd catalyst stabilized by magnesia–alumina spinel on gama-alumina for lean methane combustion: Enhancement of hydrothermal stability. Mol Catal, 2020, 496: 111185 doi: 10.1016/j.mcat.2020.111185
|
[23] |
Stoyanovskii V O, Vedyagin A A, Volodin A M, et al. Optical spectroscopy methods in the estimation of the thermal stability of bimetallic Pd-Rh/Al2O3 three-way catalysts. Top Catal, 2019, 62(1): 296
|
[24] |
Voorhoeve R J H, Johnson D W, Remeika J P, et al. Perovskite oxides: Materials science in catalysis. Science, 1977, 195(4281): 827 doi: 10.1126/science.195.4281.827
|
[25] |
Amrute A P, ?odziana Z, Schreyer H, et al. High-surface-area corundum by mechanochemically induced phase transformation of boehmite. Science, 2019, 366(6464): 485 doi: 10.1126/science.aaw9377
|
[26] |
Li J G, Pu S X, Cao W B, et al. Comment on “High-surface-area corundum by mechanochemically induced phase transformation of boehmite”. Science, 2020, 368(6494): 1
|
[27] |
尹萍, 江曉紅, 鄒敏, 等. SiO2/Co3O4核殼催化劑對AP熱分解的催化性能研究. 無機化學學報, 2014, 30(1):185
Yin P, Jiang X H, Zou M, et al. Catalytic effect of SiO2/Co3O4 core-shell catalyst on thermal decomposition of AP. Chin J Inorg Chem, 2014, 30(1): 185
|
[28] |
王達銳, 王振東, 張斌, 等. 貴金屬負載型核殼結構催化劑的制備及其催化性能影響. 化學反應工程與工藝, 2017, 33(4):289
Wang D R, Wang Z D, Zhang B, et al. Preparation and catalytic performance of noble metal loaded core-shell structured catalyst. Chem React Eng Technol, 2017, 33(4): 289
|
[29] |
Habibi A H, Hayes R E, Semagina N. Evaluation of hydrothermal stability of encapsulated PdPt@SiO2 catalyst for lean CH4 combustion. Appl Catal A Gen, 2018, 556: 129 doi: 10.1016/j.apcata.2018.02.034
|
[30] |
Zou X L, Ma Z L, Deng J L, et al. Core-shell PdO@SiO2/Al2O3 with sinter-resistance and water-tolerance promoting catalytic methane combustion. Chem Eng J, 2020, 396: 125275 doi: 10.1016/j.cej.2020.125275
|
[31] |
Zhang Z S, Sun L W, Hu X F, et al. Anti-sintering Pd@silicalite-1 for methane combustion: Effects of the moisture and SO2. Appl Surf Sci, 2019, 494: 1044 doi: 10.1016/j.apsusc.2019.07.252
|
[32] |
Ozawa M, Misaki M, Iwakawa M, et al. Low content Pt-doped CeO2 and core-shell type CeO2/ZrO2 model catalysts; microstructure, TPR and three way catalytic activities. Catal Today, 2019, 332: 251 doi: 10.1016/j.cattod.2018.08.015
|
[33] |
Li W J, Wey M Y. Core-shell design and well-dispersed Pd particles for three-way catalysis: Effect of halloysite nanotubes functionalized with Schiff base. Sci Total Environ, 2019, 675: 397 doi: 10.1016/j.scitotenv.2019.04.243
|
[34] |
Alcock C B, Hooper G W. Thermodynamics of the gaseous oxides of the platinum-group metals. Proc R Soc Lond A, 1960, 254(1279): 551 doi: 10.1098/rspa.1960.0040
|
[35] |
Xiong H F, Peterson E, Qi G, et al. Trapping mobile Pt species by PdO in diesel oxidation catalysts: Smaller is better. Catal Today, 2016, 272: 80 doi: 10.1016/j.cattod.2016.01.022
|
[36] |
Carrillo C, DeLaRiva A, Xiong H F, et al. Regenerative trapping: How Pd improves the durability of Pt diesel oxidation catalysts. Appl Catal B Environ, 2017, 218: 581 doi: 10.1016/j.apcatb.2017.06.085
|
[37] |
Ghosh A, Pham H, Higgins J, et al. Restricting the growth of Pt nanoparticles through confinement in ordered nanoporous structures. Appl Catal A Gen, 2020, 607: 117858 doi: 10.1016/j.apcata.2020.117858
|
[38] |
Wang W Y, Zhou W, Li W, et al. In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability. Appl Catal B Environ, 2020, 276: 119142 doi: 10.1016/j.apcatb.2020.119142
|
[39] |
Ament K, Wagner D R, G?tsch T, et al. Enhancing the catalytic activity of palladium nanoparticles via sandwich-like confinement by thin titanate nanosheets. ACS Catal, 2021, 11(5): 2754 doi: 10.1021/acscatal.1c00031
|
[40] |
Lu J L, Fu B S, Kung M C, et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science, 2012, 335(6073): 1205 doi: 10.1126/science.1212906
|
[41] |
Kothari M, Jeon Y, Miller D N, et al. Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles. Nat Chem, 2021, 13(6): 677
|
[42] |
Jones J, Xiong H F, DeLaRiva A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353(6295): 150 doi: 10.1126/science.aaf8800
|
[43] |
林俊明, 岑潔, 李正甲, 等. Ni基重整催化劑失活機理研究進展. 化工進展, 2021, 41(1):201 doi: 10.16085/j.issn.1000-6613.2021-0310
Lin J M, Cen J, Li Z J, et al. Development on deactivation mechanism of Ni-based reforming catalysts. Chem Ind Eng Prog, 2021, 41(1): 201 doi: 10.16085/j.issn.1000-6613.2021-0310
|
[44] |
Kwak J H, Hu J Z, Mei D H, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science, 2009, 325(5948): 1670 doi: 10.1126/science.1176745
|
[45] |
Wang Z C, Jiang Y J, Yi X F, et al. High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina. Sci Bull, 2019, 64(8): 516 doi: 10.1016/j.scib.2019.04.002
|
[46] |
Wang Z C, Jiang Y J, Jin F Z, et al. Strongly enhanced acidity and activity of amorphous silica-alumina by formation of pentacoordinated Alv species. J Catal, 2019, 372: 1 doi: 10.1016/j.jcat.2019.02.007
|
[47] |
Wu M W, Li W Z, Ogunbiyi A T, et al. Highly active and stable palladium catalysts supported on surface-modified ceria nanowires for lean methane combustion. ChemCatChem, 2021, 13(2): 664 doi: 10.1002/cctc.202001438
|
[48] |
Li C S, Li W Z, Chen K, et al. Palladium nanoparticles supported on surface-modified metal oxides for catalytic oxidation of lean methane. ACS Appl Nano Mater, 2020, 3(12): 12130 doi: 10.1021/acsanm.0c02614
|
[49] |
Zhan Y Y, Kang L, Zhou Y C, et al. Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation. J Fuel Chem Technol, 2019, 47(10): 1235 doi: 10.1016/S1872-5813(19)30050-7
|
[50] |
Lan L, Huang X, Zhou W Q, et al. Development of a thermally stable Pt catalyst by redispersion between CeO2 and Al2O3. RSC Adv, 2021, 11(12): 7015 doi: 10.1039/D1RA00059D
|
[51] |
Jeong H, Kwon O, Kim B S, et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat Catal, 2020, 3(4): 368 doi: 10.1038/s41929-020-0427-z
|
[52] |
Cargnello M, Jaén J J D, Garrido J C H, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science, 2012, 337(6095): 713 doi: 10.1126/science.1222887
|
[53] |
Velinova R, Todorova S, Drenchev B, et al. Complex study of the activity, stability and sulfur resistance of Pd/La2O3–CeO2–Al2O3 system as monolithic catalyst for abatement of methane. Chem Eng J, 2019, 368: 865 doi: 10.1016/j.cej.2019.03.017
|
[54] |
Wu Y, Li G X, Hu W, et al. Effect of MOx (M=Ce, Ni, Co, Mg) on activity and hydrothermal stability of Pd supported on ZrO2–Al2O3 composite for methane lean combustion. J Taiwan Inst Chem Eng, 2018, 85: 176 doi: 10.1016/j.jtice.2018.01.038
|
[55] |
Lee J, Kim M Y, Jeon J H, et al. Effect of Pt pre-sintering on the durability of PtPd/Al2O3 catalysts for CH4 oxidation. Appl Catal B Environ, 2020, 260: 118098 doi: 10.1016/j.apcatb.2019.118098
|
[56] |
Cai W M, Zhang S G, Lv J G, et al. Nanotubular gamma alumina with high-energy external surfaces: Synthesis and high performance for catalysis. ACS Catal, 2017, 7(6): 4083 doi: 10.1021/acscatal.7b00080
|