<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Jia-le, ZHAO Rui-ying, FENG Yan-li, YANG Hao, WU Lin-lin. A balance control method for bicycle robots based on Udwadia?Kalaba theory[J]. Chinese Journal of Engineering, 2023, 45(2): 318-325. doi: 10.13374/j.issn2095-9389.2021.08.27.007
Citation: ZHANG Jia-le, ZHAO Rui-ying, FENG Yan-li, YANG Hao, WU Lin-lin. A balance control method for bicycle robots based on Udwadia?Kalaba theory[J]. Chinese Journal of Engineering, 2023, 45(2): 318-325. doi: 10.13374/j.issn2095-9389.2021.08.27.007

A balance control method for bicycle robots based on Udwadia?Kalaba theory

doi: 10.13374/j.issn2095-9389.2021.08.27.007
More Information
  • Corresponding author: E-mail: ruiying.zhao@chd.edu.cn
  • Received Date: 2021-08-27
    Available Online: 2021-10-19
  • Publish Date: 2023-02-01
  • In the 21st century, with the rapid development of computing and sensing technology, autonomous driving has become a hot and important research topic. The vast market for bicycles has created numerous opportunities for driverless bikes. An unmanned bicycle robot has the characteristics of flexible movement and narrow body, thus it can be widely used in disaster area-rescue operations, entertainment performances, and transportation scenes. Therefore, several scholars have studied and focused on this type of bicycle. For the lateral self-balancing problem of bicycle robots, a new balance control method has been studied for a class of bicycle robots that are equipped with an angular momentum wheel. The kinematics constraint of the robot balance control is constructed based on the lateral balance condition of the bicycle robot, and the balance constraint is regarded as the control target. Based on the Udwadia–Kalaba (U–K) theory, a torque analytical model satisfying the lateral balance of the robot was established, and a balance constraint following the controller based on the model was designed. The findings show that the proposed control method can achieve the lateral balance of the bicycle robot and overcome the disturbance caused by the initial deviation of the lateral roll angle θ. Through the calculation of the balance torque model, the bicycle robot is actively balanced. Compared with the traditional PD feedback control method, the control method based on the model design has the characteristics and advantages of fast system response, low overshoot, and ease of optimization of the control torque. The proposed control method is simulated and confirmed using MATLAB, and lateral self-balancing control of the bicycle robot is achieved at the initial roll angular velocities of 0, 1, 2, and 5°·s?1. The simulation results confirm the stability and effectiveness of the control system. This study proposes a novel idea for the balance control of unmanned bicycle robots.

     

  • loading
  • [1]
    王涵. 自行車機器人平衡控制方法研究[學位論文]. 陜西: 陜西科技大學, 2019

    Wang H. Research on Balance Control Method of the Bicycle Robot [Dissertation]. Xi’an: Shaanxi University of Science and Technology, 2019
    [2]
    白國星, 孟宇, 劉立, 等. 無人駕駛車輛路徑跟蹤控制研究現狀. 工程科學學報, 2021, 43(4):475

    Bai G X, Meng Y, Liu L, et al. Current status of path tracking control of unmanned driving vehicles. Chin J Eng, 2021, 43(4): 475
    [3]
    侯帥. 基于變論域模糊控制的無人自行車控制研究[學位論文]. 大連: 大連理工大學, 2020

    Hou S. The Study and Control of Unmanned Bicycle Based on Variable Universe Fuzzy Controller [Dissertation]. Dalian: Dalian University of Technology, 2020
    [4]
    Tanaka Y, Murakami T. Self sustaining bicycle robot with steering controller // The 8th IEEE International Workshop on Advanced Motion Control. Kawasaki, 2004: 193
    [5]
    Lee S, Ham W. Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance // IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, 2002: 2200
    [6]
    Schwab A L, Meijaard J P. A review on bicycle dynamics and rider control. Veh Syst Dyn, 2013, 51(7): 1059 doi: 10.1080/00423114.2013.793365
    [7]
    Vu N K, Nguyen H Q. Balancing control of two-wheel bicycle problems. Math Probl Eng, 2020, 2020: 6724382
    [8]
    Lam P Y. Gyroscopic stabilization of a kid-size bicycle // 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems. Qingdao, 2011: 247
    [9]
    Lee S I, Lee I W, Kim M S, et al. Balancing and driving control of a bicycle robot. J Inst Control Robotics Syst, 2012, 18(6): 532 doi: 10.5302/J.ICROS.2012.18.6.532
    [10]
    Chen C K, Chu T D, Zhang X D. Modeling and control of an active stabilizing assistant system for a bicycle. Sensors, 2019, 19(2): 248 doi: 10.3390/s19020248
    [11]
    Spry S C, Girard A R. Gyroscopic stabilisation of unstable vehicles: Configurations, dynamics, and control. Veh Syst Dyn, 2008, 46(Suppl 1): 247
    [12]
    Cui L L, Wang S, Lai J, et al. Nonlinear balance control of an unmanned bicycle: Design and experiments // 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, 2021: 7279
    [13]
    Zhang Y Z, Wang P C, Yi J G, et al. Stationary balance control of a bikebot // 2014 IEEE International Conference on Robotics and Automation. Hong Kong, 2014: 6706
    [14]
    Beznos A V, Formal’sky A M, Gurfinkel E V, et al. Control of autonomous motion of two-wheel bicycle with gyroscopic stabilization // Proceedings of the I998 IEEE International Conference on Robotics and Automatlon. Leuven, 1998: 2670
    [15]
    Chen C K, Dao T K. Speed-adaptive roll-angle-tracking control of an unmanned bicycle using fuzzy logic. Veh Syst Dyn, 2010, 48(1): 133 doi: 10.1080/00423110903085872
    [16]
    張新榮, Chen Yehwa, 平昭琪. 基于Udwadia和Kalaba方程的機械臂軌跡跟蹤控制. 長安大學學報(自然科學版), 2014, 34(1):115 doi: 10.19721/j.cnki.1671-8879.2014.01.019

    Zhang X R, Chen Y, Ping Z Q. Mechanical manipulator tracking control based on Udwadia and Kalaba equation. J Chang'an Univ Nat Sci Ed, 2014, 34(1): 115 doi: 10.19721/j.cnki.1671-8879.2014.01.019
    [17]
    Udwadia F E, Kalaba R E. Analytical Dynamics: a New Approach. Cambridge: Cambridge University Press, 1996
    [18]
    Chen Y H. Constraint-following servo control design for mechanical systems. J Vib Control, 2009, 15(3): 369 doi: 10.1177/1077546307086895
    [19]
    趙韓, 趙福民, 黃康, 等. 基于Udwadia-Kalaba理論的機械臂位置控制. 合肥工業大學學報(自然科學版), 2018, 41(4):433

    Zhao H, Zhao F M, Huang K, et al. Position control of mechanical manipulator based on Udwadia-Kalaba theory. J Hefei Univ Technol Nat Sci, 2018, 41(4): 433
    [20]
    Zhao R Y, Wu L L, Chen Y H. Robust control for nonlinear delta parallel robot with uncertainty: An online estimation approach. IEEE Access, 2020, 8: 97604 doi: 10.1109/ACCESS.2020.2997093
    [21]
    Chen X L, Sun H, Zhen S C. A novel adaptive robust control approach for underactuated mobile robot // 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM). Singapore, 2018: 642
    [22]
    韓江, 汪鵬, 董方方, 等. 基于Udwadia-Kalaba方法的并聯機器人魯棒伺服約束控制. 應用數學和力學, 2021, 42(3):264

    Han J, Wang P, Dong F F, et al. Robust servo constrained control of parallel robots based on the udwadia-kalaba method. Appl Math Mech, 2021, 42(3): 264
    [23]
    Yin H, Chen Y H, Yu D J. Vehicle motion control under equality and inequality constraints: A diffeomorphism approach. Nonlinear Dyn, 2019, 95(1): 175 doi: 10.1007/s11071-018-4558-6
    [24]
    董方方, 趙曉敏. 一種基于約束力魯棒伺服控制的欠驅動柔性機械臂系統: 中國專利, 201810739283X. 2018-12-7

    Dong F F, Zhao X M. Underactuated Flexible Mechanical Arm System Based on Constraint Force Robust Servo Control: China Patent, 201810739283X. 2018-12-7
    [25]
    Bellman R. Introduction to Matrix Analysis. New York: McGraw-Hill, 1970
    [26]
    趙睿英. 多剛體系統擴展層級建模與約束跟隨控制方法研究[學位論文]. 西安: 長安大學, 2015

    Zhao R Y. Research on Extended Cascading Modeling and the Constraint-Following Control of Multi-Body Systems [Dissertation]. Xi'an: Chang'an University, 2015
    [27]
    張鐵, 覃彬彬, 鄒焱飚. 機器人負載的動力學參數辨識. 工程科學學報, 2017, 39(12):1907

    Zhang T, Qin B B, Zou Y B. Identification methods for robot payload dynamical parameters. Chin J Eng, 2017, 39(12): 1907
    [28]
    Udwadia F E. A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc R Soc Lond A, 2003, 459(2035): 1783 doi: 10.1098/rspa.2002.1062
    [29]
    Yu R R, Chen Y H, Zhao H, et al. Uniform ultimate boundedness for underactuated mechanical systems as mismatched uncertainty disappeared. Nonlinear Dyn, 2019, 95(4): 2765 doi: 10.1007/s11071-018-4721-0
    [30]
    Wang S, Cui L L, Lai J, et al. Gain scheduled controller design for balancing an autonomous bicycle // 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, 2020: 7595
    [31]
    崔旭東, 鄧少豐, 王平江. 面向六關節機器人的位置域控制. 工程科學學報, 2022, 44(2):244

    Cui X D, Deng S F, Wang P J. Position domain control technology for six-joint robots. Chin J Eng, 2022, 44(2): 244
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views (790) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频