<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
GAO Sheng-yong, GE Shu-xin, YANG Xuan-hong, WANG Qian, BAO Yan-ping. Effect of temperature on the creep behavior and mechanism of GH4169 alloy[J]. Chinese Journal of Engineering, 2023, 45(2): 301-309. doi: 10.13374/j.issn2095-9389.2021.08.27.005
Citation: GAO Sheng-yong, GE Shu-xin, YANG Xuan-hong, WANG Qian, BAO Yan-ping. Effect of temperature on the creep behavior and mechanism of GH4169 alloy[J]. Chinese Journal of Engineering, 2023, 45(2): 301-309. doi: 10.13374/j.issn2095-9389.2021.08.27.005

Effect of temperature on the creep behavior and mechanism of GH4169 alloy

doi: 10.13374/j.issn2095-9389.2021.08.27.005
More Information
  • Corresponding author: E-mail: wangqian296@163.com
  • Received Date: 2021-08-27
    Available Online: 2021-10-15
  • Publish Date: 2023-02-01
  • GH4169, a precipitation-strengthened nickel-based superalloy, has been extensively used in structural applications in temperatures up to 650 ℃ because of its high-temperature strength, long-term stability, thermal fatigue, creep resistance, corrosion resistance, weldability, oxidation resistance, and easiness to forging. Although GH4169 has been introduced for many years, it is still widely used in many applications, especially under a high-temperature environment such as the turbine engine and the turbine disk part of advanced aero-engines, spacecraft, and gas turbines. Its microstructure mainly contains five phases: γ, γ″ (Ni3Nb), γ′ (Ni3AlTi), δ (Ni3Nb), and MC carbides. The main strengthening phase of the GH4169 alloy is the γ″ phase, which is metastable, and its phase transformation to the δ phase occurs when exposed at temperatures above 650 ℃. This paper studied the effect of temperature on the creep behavior and mechanism of the nickel-based superalloy GH4169 and analyzed its fracture morphology and creep rupture mechanism. Experimental results showed that the steady creep rate of the GH4169 alloy increased, and the creep life of the GH4169 alloy decreased significantly with the increase of the creep temperature, i.e., the alloy had strong temperature sensitivity. During the creep process, the γ" phase grew, aggregated, and transformed to the δ phase. With the increase of the creep temperature, the transition of the γ″ phase to the δ phase was faster, the amount of γ″ phases in the crystal decreased, the size and volume of the δ phase increased, and the number and size of secondary cracks decreased. When the creep temperature was 650 ℃, more bright white tearing edges in the fracture appeared, the dimple size was different, and there were a small amount of precipitates and carbonization. When the temperature increased to 670 ℃, the dimple size decreased, with mainly shallow dimples and cleavage surfaces appearing. When the temperature increased to 690 ℃, there were only a few dimples and cleavage steps, and the number of δ phases increased significantly, which meant that the fracture mode was cleavage fracture or quasi-cleavage fracture.

     

  • loading
  • [1]
    侯瓊, 陶宇, 賈建. 新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制. 工程科學學報, 2019, 41(2):209

    Hou Q, Tao Y, Jia J. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging. Chin J Eng, 2019, 41(2): 209
    [2]
    Chen K, Dong J X, Yao Z H. Creep failure and damage mechanism of inconel 718 alloy at 800–900 ℃. Met Mater Int, 2021, 27(5): 970 doi: 10.1007/s12540-019-00447-4
    [3]
    Cottura M, Appolaire B, Finel A, et al. Microstructure evolution under [110] creep in Ni-base superalloys. Acta Mater, 2021, 212: 116851 doi: 10.1016/j.actamat.2021.116851
    [4]
    劉超, 江河, 董建新, 等. 鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配. 工程科學學報, 2019, 41(3):359

    Liu C, Jiang H, Dong J X, et al. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605. Chin J Eng, 2019, 41(3): 359
    [5]
    侯杰, 董建新, 姚志浩. GH4169合金高溫疲勞裂紋擴展的微觀損傷機制. 工程科學學報, 2018, 40(7):822

    Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy. Chin J Eng, 2018, 40(7): 822
    [6]
    韋康, 張勇, 王濤, 等. GH4169合金晶粒尺寸與持久性能的關聯性. 航空材料學報, 2020, 40(01):93 doi: 10.11868/j.issn.1005-5053.2019.000076

    Wei K, Zhang Y, Wang T, et al. Investigations on correlation between grain size and stress rupture property of GH4169 alloy. J Aeron Mater, 2020, 40(01): 93 doi: 10.11868/j.issn.1005-5053.2019.000076
    [7]
    劉臣, 田素貴, 王欣, 等. 一種GH4169鎳基合金的組織結構與蠕變性能. 材料工程, 2017, 45(6):43 doi: 10.11868/j.issn.1001-4381.2015.001145

    Liu C, Tian S G, Wang X, et al. Microstructure and creep property of a GH4169 nickel-based superalloy. J Mater Eng, 2017, 45(6): 43 doi: 10.11868/j.issn.1001-4381.2015.001145
    [8]
    Asala G, Andersson J, Ojo O A. A study of the dynamic impact behaviour of IN 718 and ATI 718Plus? superalloys. Philos Mag, 2019, 99(4): 419 doi: 10.1080/14786435.2018.1540891
    [9]
    Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf, 2019, 30: 100877
    [10]
    Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy. Mater Sci Eng A, 2019, 742: 493 doi: 10.1016/j.msea.2018.11.028
    [11]
    Shi J J, Zhou S A, Chen H H, et al. Microstructure and creep anisotropy of Inconel 718 alloy processed by selective laser melting. Mater Sci Eng A, 2021, 805: 140583 doi: 10.1016/j.msea.2020.140583
    [12]
    李振榮, 田素貴, 趙忠剛, 等. 熱連軋對GH4169合金蠕變行為的影響. 中國有色金屬學報, 2011, 21(7):1541

    Li Z R, Tian S G, Zhao Z G, et al. Influence of hot continuous rolling on creep behaviors of GH4169 superalloy. Chin J Nonferrous Met, 2011, 21(7): 1541
    [13]
    田素貴, 趙忠剛, 陳禮清, 等. 直接時效處理對熱連軋GH4169合金蠕變行為的影響. 航空材料學報, 2010, 30(5):14 doi: 10.3969/j.issn.1005-5053.2010.5.003

    Tian S G, Zhao Z G, Chen L Q, et al. Influence of direct aged treatment on creep behaviors of hot continuous rolling GH4169 superalloy. J Aeronaut Mater, 2010, 30(5): 14 doi: 10.3969/j.issn.1005-5053.2010.5.003
    [14]
    Hu X T, Ye W M, Zhang L C, et al. Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses. Mater Sci Eng A, 2021, 800: 140338 doi: 10.1016/j.msea.2020.140338
    [15]
    Ruan J J, Ueshima N, Oikawa K. Growth behavior of the δ-Ni3Nb phase in superalloy 718 and modified KJMA modeling for the transformation-time-temperature diagram. J Alloys Compd, 2020, 814: 152289 doi: 10.1016/j.jallcom.2019.152289
    [16]
    Xu Z, Cao L J, Zhu Q, et al. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging. Mater Sci Eng A, 2020, 794: 139947 doi: 10.1016/j.msea.2020.139947
    [17]
    You X G, Tan Y, Zhang H X, et al. Intermediate temperature creep and deformation behavior of a nickel-based superalloy prepared by electron beam layer solidification. Scr Mater, 2020, 187: 395 doi: 10.1016/j.scriptamat.2020.06.056
    [18]
    鄭渠英, 陳仲強, 于興福, 等. 固溶處理對GH4169G合金蠕變的影響. 材料研究學報, 2013, 27(4):444

    Zheng Q Y, Chen Z Q, Yu X F, et al. Influence of solution treatment on creep of a new superalloy GH4169G. Chin J Mater Res, 2013, 27(4): 444
    [19]
    李振榮, 馬春蕾, 田素貴, 等. 固溶處理的熱連軋GH4169合金的組織與蠕變特征. 材料科學與工程學報, 2012, 30(3):343

    Li Z R, Ma C L, Tian S G, et al. Microstructure and creep features of hot continuous rolled GH4169 superalloy after being solution treated. J Mater Sci Eng, 2012, 30(3): 343
    [20]
    倪自飛, 薛烽. 原位微米/納米TiC顆粒彌散強化304不銹鋼的高溫蠕變特性. 材料研究學報, 2019, 33(4):306 doi: 10.11901/1005.3093.2018.422

    Ni Z F, Xue F. High temperature creep characteristics of in-situ micro-/nano-meter TiC dispersion strengthened 304 stainless steel. Chin J Mater Res, 2019, 33(4): 306 doi: 10.11901/1005.3093.2018.422
    [21]
    曾立英, 戚運蓮, 洪權, 等. 固溶時效處理Ti-600合金的蠕變行為研究. 稀有金屬材料與工程, 2014, 43(11):2697

    Zeng L Y, Qi Y L, Hong Q, et al. Creep behavior of Ti-600 alloy solutioned and aged at α+β region. Rare Met Mater Eng, 2014, 43(11): 2697
    [22]
    彼里西阿 G E, 浦迪S M. 體視學和定量金相學. 孫惠林, 馬繼畬, 譯. 北京: 機械工業出版社, 1980

    Pellissier G E, Purdy S M. Stereopsis and Quantitative Metallography. Translated by Sun H L, Ma J S. Beijing: China Machine Press, 1980
    [23]
    孔永華, 劉瑞毅, 王飛, 等. 不同熱處理的熱連軋GH4169合金組織及抗蠕變性能研究. 稀有金屬材料與工程, 2013, 42(4):829 doi: 10.3969/j.issn.1002-185X.2013.04.035

    Kong Y H, Liu R Y, Wang F, et al. Effects of different heat treatments on microstructures and creep resistance of hot continuous rolled GH4169 alloy. Rare Met Mater Eng, 2013, 42(4): 829 doi: 10.3969/j.issn.1002-185X.2013.04.035
    [24]
    譚海波, 孫亞利. 熱處理工藝對GH4169高溫合金鍛件組織與力學性能的影響. 熱加工工藝,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html

    Tan H B, Sun Y L. Effects of heat treatment process on microstructure and mechanical properties of GH4169 superalloy forgings. Hot Working Technology,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html
    [25]
    Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency. Acta Metall Sin, 2018, 54(11): 1653
    [26]
    Li H Y, Kong Y H, Chen G S, et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy. Mater Sci Eng A, 2013, 582: 368 doi: 10.1016/j.msea.2013.06.021
    [27]
    Detrois M, Pei Z R, Rozman K A, et al. Partitioning of tramp elements Cu and Si in a Ni-based superalloy and their effect on creep properties. Materialia, 2020, 13: 100843 doi: 10.1016/j.mtla.2020.100843
    [28]
    Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy. Mater Sci Eng:A, 2018, 738: 308 doi: 10.1016/j.msea.2018.09.088
    [29]
    Peng Z C, Zou J W, Yang J, et al. Influence of γ’ precipitate on deformation and fracture during creep in PM nickel-based superalloy. Prog Nat Sci:Mater Int, 2021, 31(2): 303 doi: 10.1016/j.pnsc.2020.12.008
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (620) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频