Citation: | GAO Sheng-yong, GE Shu-xin, YANG Xuan-hong, WANG Qian, BAO Yan-ping. Effect of temperature on the creep behavior and mechanism of GH4169 alloy[J]. Chinese Journal of Engineering, 2023, 45(2): 301-309. doi: 10.13374/j.issn2095-9389.2021.08.27.005 |
[1] |
侯瓊, 陶宇, 賈建. 新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制. 工程科學學報, 2019, 41(2):209
Hou Q, Tao Y, Jia J. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging. Chin J Eng, 2019, 41(2): 209
|
[2] |
Chen K, Dong J X, Yao Z H. Creep failure and damage mechanism of inconel 718 alloy at 800–900 ℃. Met Mater Int, 2021, 27(5): 970 doi: 10.1007/s12540-019-00447-4
|
[3] |
Cottura M, Appolaire B, Finel A, et al. Microstructure evolution under [110] creep in Ni-base superalloys. Acta Mater, 2021, 212: 116851 doi: 10.1016/j.actamat.2021.116851
|
[4] |
劉超, 江河, 董建新, 等. 鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配. 工程科學學報, 2019, 41(3):359
Liu C, Jiang H, Dong J X, et al. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605. Chin J Eng, 2019, 41(3): 359
|
[5] |
侯杰, 董建新, 姚志浩. GH4169合金高溫疲勞裂紋擴展的微觀損傷機制. 工程科學學報, 2018, 40(7):822
Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy. Chin J Eng, 2018, 40(7): 822
|
[6] |
韋康, 張勇, 王濤, 等. GH4169合金晶粒尺寸與持久性能的關聯性. 航空材料學報, 2020, 40(01):93 doi: 10.11868/j.issn.1005-5053.2019.000076
Wei K, Zhang Y, Wang T, et al. Investigations on correlation between grain size and stress rupture property of GH4169 alloy. J Aeron Mater, 2020, 40(01): 93 doi: 10.11868/j.issn.1005-5053.2019.000076
|
[7] |
劉臣, 田素貴, 王欣, 等. 一種GH4169鎳基合金的組織結構與蠕變性能. 材料工程, 2017, 45(6):43 doi: 10.11868/j.issn.1001-4381.2015.001145
Liu C, Tian S G, Wang X, et al. Microstructure and creep property of a GH4169 nickel-based superalloy. J Mater Eng, 2017, 45(6): 43 doi: 10.11868/j.issn.1001-4381.2015.001145
|
[8] |
Asala G, Andersson J, Ojo O A. A study of the dynamic impact behaviour of IN 718 and ATI 718Plus? superalloys. Philos Mag, 2019, 99(4): 419 doi: 10.1080/14786435.2018.1540891
|
[9] |
Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf, 2019, 30: 100877
|
[10] |
Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy. Mater Sci Eng A, 2019, 742: 493 doi: 10.1016/j.msea.2018.11.028
|
[11] |
Shi J J, Zhou S A, Chen H H, et al. Microstructure and creep anisotropy of Inconel 718 alloy processed by selective laser melting. Mater Sci Eng A, 2021, 805: 140583 doi: 10.1016/j.msea.2020.140583
|
[12] |
李振榮, 田素貴, 趙忠剛, 等. 熱連軋對GH4169合金蠕變行為的影響. 中國有色金屬學報, 2011, 21(7):1541
Li Z R, Tian S G, Zhao Z G, et al. Influence of hot continuous rolling on creep behaviors of GH4169 superalloy. Chin J Nonferrous Met, 2011, 21(7): 1541
|
[13] |
田素貴, 趙忠剛, 陳禮清, 等. 直接時效處理對熱連軋GH4169合金蠕變行為的影響. 航空材料學報, 2010, 30(5):14 doi: 10.3969/j.issn.1005-5053.2010.5.003
Tian S G, Zhao Z G, Chen L Q, et al. Influence of direct aged treatment on creep behaviors of hot continuous rolling GH4169 superalloy. J Aeronaut Mater, 2010, 30(5): 14 doi: 10.3969/j.issn.1005-5053.2010.5.003
|
[14] |
Hu X T, Ye W M, Zhang L C, et al. Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses. Mater Sci Eng A, 2021, 800: 140338 doi: 10.1016/j.msea.2020.140338
|
[15] |
Ruan J J, Ueshima N, Oikawa K. Growth behavior of the δ-Ni3Nb phase in superalloy 718 and modified KJMA modeling for the transformation-time-temperature diagram. J Alloys Compd, 2020, 814: 152289 doi: 10.1016/j.jallcom.2019.152289
|
[16] |
Xu Z, Cao L J, Zhu Q, et al. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging. Mater Sci Eng A, 2020, 794: 139947 doi: 10.1016/j.msea.2020.139947
|
[17] |
You X G, Tan Y, Zhang H X, et al. Intermediate temperature creep and deformation behavior of a nickel-based superalloy prepared by electron beam layer solidification. Scr Mater, 2020, 187: 395 doi: 10.1016/j.scriptamat.2020.06.056
|
[18] |
鄭渠英, 陳仲強, 于興福, 等. 固溶處理對GH4169G合金蠕變的影響. 材料研究學報, 2013, 27(4):444
Zheng Q Y, Chen Z Q, Yu X F, et al. Influence of solution treatment on creep of a new superalloy GH4169G. Chin J Mater Res, 2013, 27(4): 444
|
[19] |
李振榮, 馬春蕾, 田素貴, 等. 固溶處理的熱連軋GH4169合金的組織與蠕變特征. 材料科學與工程學報, 2012, 30(3):343
Li Z R, Ma C L, Tian S G, et al. Microstructure and creep features of hot continuous rolled GH4169 superalloy after being solution treated. J Mater Sci Eng, 2012, 30(3): 343
|
[20] |
倪自飛, 薛烽. 原位微米/納米TiC顆粒彌散強化304不銹鋼的高溫蠕變特性. 材料研究學報, 2019, 33(4):306 doi: 10.11901/1005.3093.2018.422
Ni Z F, Xue F. High temperature creep characteristics of in-situ micro-/nano-meter TiC dispersion strengthened 304 stainless steel. Chin J Mater Res, 2019, 33(4): 306 doi: 10.11901/1005.3093.2018.422
|
[21] |
曾立英, 戚運蓮, 洪權, 等. 固溶時效處理Ti-600合金的蠕變行為研究. 稀有金屬材料與工程, 2014, 43(11):2697
Zeng L Y, Qi Y L, Hong Q, et al. Creep behavior of Ti-600 alloy solutioned and aged at α+β region. Rare Met Mater Eng, 2014, 43(11): 2697
|
[22] |
彼里西阿 G E, 浦迪S M. 體視學和定量金相學. 孫惠林, 馬繼畬, 譯. 北京: 機械工業出版社, 1980
Pellissier G E, Purdy S M. Stereopsis and Quantitative Metallography. Translated by Sun H L, Ma J S. Beijing: China Machine Press, 1980
|
[23] |
孔永華, 劉瑞毅, 王飛, 等. 不同熱處理的熱連軋GH4169合金組織及抗蠕變性能研究. 稀有金屬材料與工程, 2013, 42(4):829 doi: 10.3969/j.issn.1002-185X.2013.04.035
Kong Y H, Liu R Y, Wang F, et al. Effects of different heat treatments on microstructures and creep resistance of hot continuous rolled GH4169 alloy. Rare Met Mater Eng, 2013, 42(4): 829 doi: 10.3969/j.issn.1002-185X.2013.04.035
|
[24] |
譚海波, 孫亞利. 熱處理工藝對GH4169高溫合金鍛件組織與力學性能的影響. 熱加工工藝,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html
Tan H B, Sun Y L. Effects of heat treatment process on microstructure and mechanical properties of GH4169 superalloy forgings. Hot Working Technology,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html
|
[25] |
Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency. Acta Metall Sin, 2018, 54(11): 1653
|
[26] |
Li H Y, Kong Y H, Chen G S, et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy. Mater Sci Eng A, 2013, 582: 368 doi: 10.1016/j.msea.2013.06.021
|
[27] |
Detrois M, Pei Z R, Rozman K A, et al. Partitioning of tramp elements Cu and Si in a Ni-based superalloy and their effect on creep properties. Materialia, 2020, 13: 100843 doi: 10.1016/j.mtla.2020.100843
|
[28] |
Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy. Mater Sci Eng:A, 2018, 738: 308 doi: 10.1016/j.msea.2018.09.088
|
[29] |
Peng Z C, Zou J W, Yang J, et al. Influence of γ’ precipitate on deformation and fracture during creep in PM nickel-based superalloy. Prog Nat Sci:Mater Int, 2021, 31(2): 303 doi: 10.1016/j.pnsc.2020.12.008
|