Citation: | CHEN Gang-xin, SUN Xian-zhong, ZHANG Xiong, WANG Kai, MA Yan-wei. Progress of high-power lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 612-624. doi: 10.13374/j.issn2095-9389.2021.08.16.004 |
[1] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359 doi: 10.1038/35104644
|
[2] |
中華人民共和國工業和信息化部. GB/T 31486—2015電動汽車用動力蓄電池電性能要求及試驗方法. 北京: 中國標準出版社, 2015
Ministry of Industry and Information Technology, People’s Republic of China. GB/T 31486—2015 Electrical Performance Requirements and Test Methods for Traction Battery of Electric Vehicle. Beijing: China Standards Press, 2015
|
[3] |
Li C, Zhang X, Lv Z, et al. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem Eng J, 2021, 414: 128781 doi: 10.1016/j.cej.2021.128781
|
[4] |
趙淑紅, 吳鋒, 王子冬, 等. 動力電池功率密度性能測試評價方法的比較研究. 兵工學報, 2009, 30(6):764
Zhao S H, Wu F, Wang Z D, et al. Study on the different test methods for power density of power batteries. Acta Armamentarii, 2009, 30(6): 764
|
[5] |
張健, 劉建文, 劉全兵. 超高功率鋰離子電池研究. 電源技術, 2016, 40(5):973
Zhang J, Liu J W, Liu Q B. Research on ultra-high power Li-ion battery. Chin J Power Sources, 2016, 40(5): 973
|
[6] |
張劍波, 連芳, 高學平, 等. 鋰離子電池及材料發展前瞻——第16屆國際鋰電會議評述. 中國科學: 化學, 2012, 42(8): 1252
Zhang J B, Lian F, Gao X P, et al. Advance of lithium ion batteries: The 16th International Meeting on Lithium Batteries. Sci Sin Chimica, 2012, 42(8): 1252
|
[7] |
Wang Y, Cao G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater, 2008, 20(12): 2251 doi: 10.1002/adma.200702242
|
[8] |
張杰男. 高電壓鈷酸鋰的失效分析與改性研究[學位論文]. 北京: 中國科學院大學(中國科學院物理研究所), 2018
Zhang J N. Failure Analysis and Modification Research on High Voltage LiCoO2 [Dissertation]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, CAS), 2018
|
[9] |
Gong Y, Zhang J N, Jiang L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J Am Chem Soc, 2017, 139(12): 4274 doi: 10.1021/jacs.6b13344
|
[10] |
Zhang J N, Li Q H, Li Q, et al. Improved electrochemical performances of high voltage LiCoO2 with tungsten doping. Chin Phys B, 2018, 27(8): 088202 doi: 10.1088/1674-1056/27/8/088202
|
[11] |
Yang Q, Huang J, Li Y J, et al. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J Power Sources, 2018, 388: 65 doi: 10.1016/j.jpowsour.2018.03.076
|
[12] |
Tukamoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc, 1997, 144(9): 3164 doi: 10.1149/1.1837976
|
[13] |
Ceder G, Chiang Y M, Sadoway D R, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 1998, 392(6677): 694 doi: 10.1038/33647
|
[14] |
Gopukumar S, Jeong Y, Kim K B. Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion, 2003, 159(3-4): 223 doi: 10.1016/S0167-2738(03)00081-X
|
[15] |
Zhang J N, Li Q H, Ouyang C Y, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy, 2019, 4(7): 594 doi: 10.1038/s41560-019-0409-z
|
[16] |
Morimoto H, Awano H, Terashima J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2?x(PO4)3 (x=0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell. J Power Sources, 2013, 240: 636
|
[17] |
Yano A, Shikano M, Ueda A, et al. LiCoO2 Degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating. J Electrochem Soc, 2016, 164(1): A6116
|
[18] |
Jayasree S S, Nair S, Santhanagopalan D. Ultrathin TiO2 coating on LiCoO2 for improved electrochemical performance as Li–ion battery cathode. Chem Select, 2018, 3(10): 2763
|
[19] |
Zhang J N, Li Q H, Wang Y, et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater, 2018, 14: 1 doi: 10.1016/j.ensm.2018.02.016
|
[20] |
Hong S K, Mho S I, Yeo I H, et al. Structural and electrochemical characteristics of morphology-controlled Li[Ni0.5Mn1.5]O4 cathodes. Electrochim Acta, 2015, 156: 29 doi: 10.1016/j.electacta.2015.01.027
|
[21] |
Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195(4): 939 doi: 10.1016/j.jpowsour.2009.08.089
|
[22] |
陳立泉. 鋰離子電池正極材料的研究進展. 電池, 2002, 32(S1): 6
Chen L Q. Research progress in cathode materials of Li-ion battery. Battery Bimonthly, 2002, 32(S1), 6
|
[23] |
Jia G L, Jiao C M, Xue W J, et al. Improvement in electrochemical performance of calcined LiNi0.5Mn1.5O4/GO. Solid State Ion, 2016, 292: 15 doi: 10.1016/j.ssi.2016.05.003
|
[24] |
Fang X, Shen C F, Ge M Y, et al. High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film. Nano Energy, 2015, 12: 43 doi: 10.1016/j.nanoen.2014.11.052
|
[25] |
Chang Q, Wei A J, Li W, et al. Structural and electrochemical characteristics of Al2O3-modified LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Ceram Int, 2019, 45(4): 5100 doi: 10.1016/j.ceramint.2018.11.213
|
[26] |
Zhu R N, Zhang S J, Guo Q X, et al. More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials. Electrochimical Acta, 2020, 342: 136074 doi: 10.1016/j.electacta.2020.136074
|
[27] |
Mou J R, Deng Y L, He L H, et al. Critical roles of semi-conductive LaFeO3 coating in enhancing cycling stability and rate capability of 5 V LiNi0.5Mn1.5O4 cathode materials. Electrochimical Acta, 2018, 260: 101 doi: 10.1016/j.electacta.2017.11.059
|
[28] |
Dong H, Zhang Y, Zhang S, et al. Improved high temperature performance of a spinel LiNi0.5Mn1.5O4 cathode for high-voltage lithium-ion batteries by surface modification of a flexible conductive nanolayer. ACS Omega, 2019, 4(1): 185 doi: 10.1021/acsomega.8b02571
|
[29] |
Jurng S, Heiskanen S K, Chandrasiri K, et al. Minimized metal dissolution from high-energy nickel cobalt manganese oxide cathodes with Al2O3 coating and its effects on electrolyte decomposition on graphite anodes. J Electrochem Soc, 2019, 166(13): A2721 doi: 10.1149/2.0101913jes
|
[30] |
Park B C, Kim H B, Myung S T, et al. Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. J Power Sources, 2008, 178(2): 826 doi: 10.1016/j.jpowsour.2007.08.034
|
[31] |
Liu W J, Sun X Z, Zhang X, et al. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion battery. Rare Met, 2021, 40(3): 521 doi: 10.1007/s12598-020-01406-4
|
[32] |
Liu W J, Li C, Sun X Z, et al. Improvement of the high-rate capability of LiNi1/3Co1/3Mn1/3O2 cathode by adding highly electroconductive and mesoporous graphene. J Alloys Compd, 2018, 758: 206 doi: 10.1016/j.jallcom.2018.05.110
|
[33] |
孫現眾, 張熊, 王凱, 等. 高能量密度的鋰離子混合型電容器. 電化學, 2017, 23(5):586
Sun X Z, Zhang X, Wang K, et al. Lithium ion hybrid capacitor with high energy density. J Electrochem, 2017, 23(5): 586
|
[34] |
Sun X Z, Zhang X, Huang B, et al. (LiNi0.5Co0.2Mn0.3O2 + AC)/graphite hybrid energy storage device with high specific energy and high rate capability. J Power Sources, 2013, 243: 361 doi: 10.1016/j.jpowsour.2013.06.038
|
[35] |
Sun X Z, Zhang X, Zhang H T, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J Power Sources, 2014, 270: 318 doi: 10.1016/j.jpowsour.2014.07.146
|
[36] |
Du T, Liu Z E, Sun X Z, et al. Segmented bi-material cathodes to boost the lithium-ion battery-capacitors. J Power Sources, 2020, 478: 228994 doi: 10.1016/j.jpowsour.2020.228994
|
[37] |
羅飛, 褚賡, 黃杰, 等. 鋰離子電池基礎科學問題(Ⅷ)——負極材料. 儲能科學與技術, 2014, 3(2):146
Luo F, Chu G, Huang J, et al. Fundamental scientific aspects of lithium batteries(Ⅷ)—Anode electrode materials. Energy Storage Sci Technol, 2014, 3(2): 146
|
[38] |
Li Z, Sun X Z, Liu W J, et al. A comparative study of pre-lithiated hard carbon and soft carbon as anodes for lithium-ion capacitors. J Electrochem, 2019, 25(1): 122
|
[39] |
潘廣宏, 趙永彬, 張開周, 等. 高功率鋰離子電池軟/硬復合碳負極材料. 儲能科學與技術, 2017, 6(1):94
Pan G H, Zhao Y B, Zhang K Z, et al. High power soft/hard carbon composite anode for rechargeable lithium-ion battery. Energy Storage Sci Technol, 2017, 6(1): 94
|
[40] |
Zhang H T, Sun X Z, Zhang X, et al. High-capacity nanocarbon anodes for lithium-ion batteries. J Alloys Compd, 2015, 622: 783 doi: 10.1016/j.jallcom.2014.10.188
|
[41] |
Zhang H T, Wang K, Zhang X, et al. Self-generating graphene and porous nanocarbon composites for capacitive energy storage. J Mater Chem A, 2015, 3(21): 11277 doi: 10.1039/C5TA01783A
|
[42] |
呂巖, 張浩, 曹高萍, 等. 提高負極材料Li4Ti5O12倍率性能的進展. 電池, 2010, 40(3):164
Lu Y, Zhang H, Cao G P, et al. The progress in improving rate performance of anode material Li4Ti5O12. Battery Bimon, 2010, 40(3): 164
|
[43] |
Qian D L, Gu Y J, Chen Y B, et al. Ultra-high specific capacity of Cr3+-doped Li4Ti5O12 at 1.55 V as anode material for lithium-ion batteries. Mater Lett, 2019, 238: 102
|
[44] |
韓葉虎. 鋰離子電池負極材料鈦酸鋰改性制備及電化學性能研究[學位論文]. 煙臺: 煙臺大學, 2019
Han Y H. Preparation and Electrochemical Performance of Lithium Titanate as Anode Materials for Li-Ion Batteries [Dissertation]. Yantai: Yantai University, 2019
|
[45] |
Yan G L, Xu X R, Zhang W T, et al. Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries. Nanotechnology, 2020, 31(20): 205402 doi: 10.1088/1361-6528/ab7047
|
[46] |
嚴桂林. 鋰離子電池用鈦酸鋰負極材料的制備與性能研究[學位論文]. 成都: 成都理工大學, 2020
Yan G L. Preparation and Performance of Lithium Titanate Anode Materials for Lithium-Ion Batteries [Dissertation]. Chengdu: Chengdu University of Technology, 2020
|
[47] |
趙興茹, 安琪, 馬向東, 等. 金屬氧化物作為鋰離子電容器負極的研究進展. 儲能科學與技術, 2018, 7(4):555
Zhao X R, An Q, Ma X D, et al. Research progress of metal oxides as anode materials for lithium ion capacitors. Energy Storage Sci Technol, 2018, 7(4): 555
|
[48] |
Li C, Zhang X, Wang K, et al. A 29.3 Wh kg?1 and 6 kW kg?1 pouch-type lithium-ion capacitor based on SiOx/graphite composite anode. J Power Sources, 2019, 414: 293
|
[49] |
Sun X Z, Geng L B, Yi S, et al. Effects of carbon black on the electrochemical performances of SiOx anode for lithium-ion capacitors. J Power Sources, 2021, 499: 229936 doi: 10.1016/j.jpowsour.2021.229936
|
[50] |
Lv P P, Zhao H L, Li Z L, et al. Citrate-nitrate gel combustion synthesis of micro/nanostructured SiOx/C composite as high-performance lithium-ion battery anode. Solid State Ion, 2019, 340: 115024 doi: 10.1016/j.ssi.2019.115024
|
[51] |
Lu X X, Mao Q N, Chen Y F, et al. A novel oxygen vacancy introduced microstructural reconstruction of SnO2-graphene nanocomposite: Demonstration of enhanced electrochemical performance for sodium storage. Electrochimica Acta, 2018, 282: 351 doi: 10.1016/j.electacta.2018.06.069
|
[52] |
Zhao X R, Zhang X, Li C, et al. High-performance lithium-ion capacitors based on CoO-graphene composite anode and holey carbon nanolayer cathode. ACS Sustainable Chem Eng, 2019, 7(13): 11275 doi: 10.1021/acssuschemeng.9b00641
|
[53] |
Yuan T Z, Jiang Y Z, Sun W P, et al. Ever-increasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Funct Mater, 2016, 26(13): 2198 doi: 10.1002/adfm.201504849
|
[54] |
Liu H D, Zhu Z Y, Yan Q Z, et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585(7823): 63 doi: 10.1038/s41586-020-2637-6
|
[55] |
Liu W J, Zhang X, Li C, et al. Carbon-coated Li3VO4 with optimized structure as high capacity anode material for lithium-ion capacitors. Chin Chem Lett, 2020, 31(9): 2225 doi: 10.1016/j.cclet.2019.11.015
|
[56] |
Zhang S J, Li C, Zhang X, et al. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode. ACS Appl Mater Interfaces, 2017, 9(20): 17136 doi: 10.1021/acsami.7b03452
|
[57] |
Qu X L, Ren Z H, Yang Y X, et al. Solid-state sintering strategy for simultaneous nanosizing and surface coating of iron oxides as high-capacity anodes for long life Li-ion batteries. ACS Appl Energy Mater, 2018, 1(11): 6330 doi: 10.1021/acsaem.8b01308
|
[58] |
Qin L, Liu Y, Xu S Y, et al. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors. Small Methods, 2020, 4(12): 2000630 doi: 10.1002/smtd.202000630
|
[59] |
Qu X L, Zhang X, Wu Y J, et al. An eggshell-structured N-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. J Power Sources, 2019, 443: 227265 doi: 10.1016/j.jpowsour.2019.227265
|
[60] |
Yang Y X, Ni C L, Gao M X, et al. Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy Storage Mater, 2018, 14: 279 doi: 10.1016/j.ensm.2018.04.008
|
[61] |
An Y B, Chen S, Zou M M, et al. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met, 2019, 38(12): 1113 doi: 10.1007/s12598-019-01328-w
|
[62] |
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104(10): 4303 doi: 10.1021/cr030203g
|
[63] |
莊全超, 武山, 劉文元, 等. 鋰離子電池有機電解液研究. 電化學, 2001, 7(4):403
Zhuang Q C, Wu S, Liu W Y, et al. The research of organic electrolyte solutions for Li-ion batteries. Electrochemistry, 2001, 7(4): 403
|
[64] |
劉亞利, 吳嬌楊, 李泓. 鋰離子電池基礎科學問題(Ⅸ)—非水液體電解質材料. 儲能科學與技術, 2014(3):262
Liu Y L, Wu J Y, Li H. Fundamental scientific aspects of lithium ion batteries (Ⅸ)—Nonaqueous electrolyte materials. Energy Storage Sci Technol, 2014(3): 262
|
[65] |
穆德穎, 劉元龍, 戴長松. 鋰離子電池液態有機電解液的研究進展. 電池, 2019, 49(1):68
Mu D Y, Liu Y L, Dai C S. Research progress in liquid organic electrolyte for Li-ion battery. Battery Bimon, 2019, 49(1): 68
|
[66] |
張昕岳, 周園, 鄧小宇, 等. 鋰離子電池LiBF4基液體電解質研究進展. 化學通報, 2007, 70(12):929
Zhang X Y, Zhou Y, Deng X Y, et al. Progress in LiBF4-based liquid electrolytes for Li-ion batteries. Chemistry, 2007, 70(12): 929
|
[67] |
Dong Q Y, Guo F, Cheng Z J, et al. Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||Graphite cells. ACS Appl Energy Mater, 2020, 3(1): 695 doi: 10.1021/acsaem.9b01894
|
[68] |
Ehteshami N, Ibing L, Stolz L, et al. Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes. J Power Sources, 2020, 451: 227804 doi: 10.1016/j.jpowsour.2020.227804
|
[69] |
Dougassa Y R, Jacquemin J, El Ouatani L, et al. Viscosity and carbon dioxide solubility for LiPF6, LiTFSI, and LiFAP in alkyl carbonates: lithium salt nature and concentration effect. J Phys Chem B, 2014, 118(14): 3973 doi: 10.1021/jp500063c
|
[70] |
李萌, 邱景義, 余仲寶, 等. 高功率鋰離子電池電解液中導電鋰鹽的新應用. 電源技術, 2015, 39(1):191
Li M, Qiu J Y, Yu Z B, et al. New use of conducting salts in electrolytes of high power Li ion batteries. Chin J Power Sources, 2015, 39(1): 191
|
[71] |
Han H B, Zhou S S, Zhang D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J Power Sources, 2011, 196(7): 3623 doi: 10.1016/j.jpowsour.2010.12.040
|
[72] |
Balakrishnan P G, Ramesh R, Prem Kumar T. Safety mechanisms in lithium-ion batteries. J Power Sources, 2006, 155(2): 401 doi: 10.1016/j.jpowsour.2005.12.002
|
[73] |
Yun J J, Zhang L, Qu Q T, et al. A binary cyclic carbonates-based electrolyte containing propylene carbonate and trifluoropropylene carbonate for 5 V lithium-ion batteries. Electrochim Acta, 2015, 167: 151 doi: 10.1016/j.electacta.2015.03.159
|
[74] |
Wu F, Zhou H, Bai Y, et al. Toward 5 V Li-ion batteries: Quantum chemical calculation and electrochemical characterization of sulfone-based high-voltage electrolytes. ACS Appl Mater Interfaces, 2015, 7(27): 15098 doi: 10.1021/acsami.5b04477
|
[75] |
Chen R J, Zhu L, Wu F, et al. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. J Power Sources, 2014, 245: 730 doi: 10.1016/j.jpowsour.2013.06.132
|
[76] |
Ming J, Cao Z, Wu Y Q, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries. ACS Energy Letters, 2019, 4(11): 2613 doi: 10.1021/acsenergylett.9b01441
|
[77] |
李放放, 陳仕謀. 高壓鋰離子電池電解液添加劑研究進展. 儲能科學與技術, 2016, 5(4):436
Li F F, Chen S M. Research progress on electrolyte additives for high voltage lithium-ion batteries. Energy Storage Sci Technol, 2016, 5(4): 436
|
[78] |
Zhou M J, Qin C Y, Liu Z, et al. Enhanced high voltage cyclability of LiCoO2 cathode by adopting poly[bis-(ethoxyethoxyethoxy)phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries. Appl Surf Sci, 2017, 403: 260 doi: 10.1016/j.apsusc.2017.01.189
|
[79] |
Lee Y M, Nam K M, Hwang E H, et al. Interfacial origin of performance improvement and fade for 4.6 V LiNi0. 5Co0.2Mn0.3O2 battery cathodes. J Phys Chem C, 2014, 118(20): 10631
|
[80] |
Zuo X X, Fan C J, Liu J S, et al. Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells. J Power Sources, 2013, 229: 308 doi: 10.1016/j.jpowsour.2012.12.056
|
[81] |
Xu H W, Shi J L, Hu G S, et al. Hybrid electrolytes incorporated with dandelion-like silane Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. J Power Sources, 2018, 391: 113 doi: 10.1016/j.jpowsour.2018.04.060
|
[82] |
Park M S, Lim Y G, Kim J H, et al. A novel lithium-doping approach for an advanced lithium ion capacitor. Adv Energy Mater, 2011, 1(6): 1002 doi: 10.1002/aenm.201100270
|
[83] |
Cao W J, Shih J, Zheng J P, et al. Development and characterization of Li-ion capacitor pouch cells. J Power Sources, 2014, 257: 388 doi: 10.1016/j.jpowsour.2014.01.087
|
[84] |
Sun X Z, An Y B, Geng L B, et al. Leakage current and self-discharge in lithium-ion capacitor. J Electroanal Chem, 2019, 850: 113386 doi: 10.1016/j.jelechem.2019.113386
|
[85] |
Cao W J, Luo J F, Yan J, et al. High performance Li-ion capacitor laminate cells based on hard carbon/lithium stripes negative electrodes. J Electrochem Soc, 2016, 164(2): A93
|
[86] |
Sun C K, Zhang X, Li C, et al. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater, 2020, 32: 497 doi: 10.1016/j.ensm.2020.07.009
|
[87] |
Je?owski P, Fic K, Crosnier O, et al. Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors. J Mater Chem A, 2016, 4(32): 12609 doi: 10.1039/C6TA03810G
|
[88] |
Guo Y T, Li X H, Wang Z X, et al. Bifunctional Li6CoO4 serving as prelithiation reagent and pseudocapacitive electrode for lithium ion capacitors. J Energy Chem, 2020, 47: 38 doi: 10.1016/j.jechem.2019.11.003
|
[89] |
Zhang S S. Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor. J Power Sources, 2017, 343: 322 doi: 10.1016/j.jpowsour.2017.01.061
|
[90] |
Park M S, Lim Y G, Hwang S M, et al. Scalable Integration of Li5FeO4 towards robust, high‐performance lithium‐ion hybrid capacitors. ChemSusChem, 2014, 7(11): 3138 doi: 10.1002/cssc.201402397
|
[91] |
Arnaiz M, Shanmukaraj D, Carriazo D, et al. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. Energy Environ Sci, 2020, 13(8): 2441 doi: 10.1039/D0EE00351D
|
[92] |
Hwang S W, Yoon W Y. Effect of Li powder-coated separator on irreversible behavior of SiOx-C anode in lithium-ion batteries. J Electrochem Soc, 2014, 161(10): A1753 doi: 10.1149/2.0031412jes
|
[93] |
Ai G, Wang Z H, Zhao H, et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries. J Power Sources, 2016, 309: 33 doi: 10.1016/j.jpowsour.2016.01.061
|
[94] |
Je?owski P, Crosnier O, Deunf E, et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat Mater, 2018, 17(2): 167 doi: 10.1038/nmat5029
|
[95] |
安富強, 何冬林, 龐錚, 等. 具有微米纖維碳的硅/石墨/碳復合材料的制備及在鋰離子電池中的應用. 工程科學學報, 2019, 41(10):1307
An F Q, He D L, Pang Z, et al. Preparation of silicon /graphite /carbon composites with fiber carbon and their application in lithium-ion batteries. Chin J Eng, 2019, 41(10): 1307
|
[96] |
汪樹軍, 劉慶國. 酚醛樹脂碳化產物作為鋰離子電池碳電極材料(Ⅱ)——鋰離子電池充放電性能測試. 工程科學學報, 2000, 22(6):533
Wang S J, Liu Q G. Carbonized production of phenolic aldehyde as the electrode materials of lithium ion batteries (ii)——analyzed of the charge and discharge performance of the lithium ion cells. Chin J Eng, 2000, 22(6): 533
|
[97] |
張曉虎, 孫現眾, 張熊, 等. 鋰離子電容器在新能源領域應用展望. 電工電能新技術, 2020, 39(11):48
Zhang X H, Sun X Z, Zhang X, et al. Prospect of lithium-ion capacitor application in new energy field. Adv Technol Electr Eng Energy, 2020, 39(11): 48
|
[98] |
Ajuria J, Aguesse F. An ultrafast battery performing as a supercapacitor: Electrode tuning for high power performance. Electrochimica Acta, 2020, 334: 135587 doi: 10.1016/j.electacta.2019.135587
|