Citation: | RUAN Zhu-en, WU Ai-xiang, WANG Yi-ming, WANG Shao-yong, WANG Jian-dong. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste[J]. Chinese Journal of Engineering, 2022, 44(4): 496-503. doi: 10.13374/j.issn2095-9389.2021.08.15.001 |
[1] |
吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
|
[2] |
Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner Eng, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025
|
[3] |
Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488
|
[4] |
吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152
Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152
|
[5] |
Wang Y, Wu A X, Ruan Z E, et al. Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process. Int J Miner Metall Mater, 2020, 27(11): 1430 doi: 10.1007/s12613-020-2116-y
|
[6] |
Yang L H, Wang H J, Wu A X, et al. Shear thinning and thickening of cemented paste backfill. Appl Rheol, 2019, 29(1): 80 doi: 10.1515/arh-2019-0008
|
[7] |
李雪, 李翠平, 顏丙恒, 等. 基于離散元的膏體攪拌影響因素分析. 金屬礦山, 2021, 3:19
Li X, Li C P, Yan B H, et al. Analysis of the influence factors of paste stirring based on discrete element method. Met Mine, 2021, 3: 19
|
[8] |
楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343
Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343
|
[9] |
劉曉輝, 吳愛祥, 姚建, 等. 膏體尾礦管內滑移流動阻力特性及其近似計算方法. 中國有色金屬學報, 2019, 29(10):2403
Liu X H, Wu A X, Yao J, et al. Resistance characteristic and approximate calculation of paste tailings slip flow inside pipe. Chin J Nonferrous Met, 2019, 29(10): 2403
|
[10] |
Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
|
[11] |
Liu L, Fang Z Y, Qi C C, et al. Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects. Powder Technol, 2019, 343: 454 doi: 10.1016/j.powtec.2018.11.070
|
[12] |
Qi C C, Chen Q S, Fourie A, et al. Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study. Powder Technol, 2018, 333: 9 doi: 10.1016/j.powtec.2018.03.070
|
[13] |
Deng X J, Zhang J X, Klein B, et al. Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill. Int J Miner Process, 2017, 168: 116 doi: 10.1016/j.minpro.2017.09.019
|
[14] |
Wu A X, Wang Y, Wang H J, et al. Coupled effects of cement type and water quality on the properties of cemented paste backfill. Int J Miner Process, 2015, 143: 65 doi: 10.1016/j.minpro.2015.09.004
|
[15] |
Jiang H Q, Fall M, Cui L. Freezing behaviour of cemented paste backfill material in column experiments. Constr Build Mater, 2017, 147: 837 doi: 10.1016/j.conbuildmat.2017.05.002
|
[16] |
Cao S, Zheng D, Yilmaz E, et al. Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects. Constr Build Mater, 2020, 256: 119408 doi: 10.1016/j.conbuildmat.2020.119408
|
[17] |
薛亞洲, 王海軍, 湯家軒, 等. 中國礦產資源節約與綜合利用報告. 北京: 地質出版社, 2015
Xue Y Z, Wang H J, Tang J X, et al. The Report of Saving & Comprehensive Utilization in China. Beijing: Geological Publishing House, 2015
|
[18] |
姚華輝, 蔡練兵, 劉維, 等. 我國金屬礦山廢石資源化綜合利用現狀與發展. 中國有色金屬學報, 2021, 31(6):1649
Yao H H, Cai L B, Liu W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China. Chin J Nonferrous Met, 2021, 31(6): 1649
|
[19] |
王洪江, 吳愛祥, 肖衛國, 等. 粗粒級膏體充填的技術進展及存在的問題. 金屬礦山, 2009(11):1
Wang H J, Wu A X, Xiao W G, et al. The progresses of coarse paste fill technology and its existing problem. Met Mine, 2009(11): 1
|
[20] |
張修香, 喬登攀, 孫宏生. 廢石?尾砂高濃度料漿管道輸送特性模擬. 中國有色金屬學報, 2019, 29(5):1092
Zhang X X, Qiao D P, Sun H S. Simulation on conveying characteristics in pipe about high-density slurry with waste rock-tailing. Chin J Nonferrous Met, 2019, 29(5): 1092
|
[21] |
李紅, 吳愛祥, 王洪江, 等. 粗粒級膏體充填材料靜動態抗離析性能表征. 中南大學學報(自然科學版), 2016, 47(11):3909
Li H, Wu A X, Wang H J, et al. Static and dynamic anti-segregation property characterization of coarse-grained paste backfill slurry. J Central South Univ Sci Technol, 2016, 47(11): 3909
|
[22] |
Sun W, Wang H J, Hou K P. Control of waste rock-tailings paste backfill for active mining subsidence areas. J Clean Prod, 2018, 171: 567 doi: 10.1016/j.jclepro.2017.09.253
|
[23] |
吳愛祥, 姜關照, 王貽明. 礦山新型充填膠凝材料概述與發展趨勢. 金屬礦山, 2018, 3:1
Wu A X, Jiang G Z, Wang Y M. Review and development trend of new type filling cementing materials in mines. Met Mine, 2018, 3: 1
|
[24] |
國家市場監督管理總局. GB/T39489—2020 全尾砂膏體充填技術規范. 北京: 中國標準出版社, 2020
General Administration of Quality Supervision, People's Republic of China. GB/T39489—2020 Technical Specification for the Total Tailings Paste Backfill. Beijing: Standards Press of China, 2020
|
[25] |
楊柳華, 王洪江, 吳愛祥, 等. 全尾砂戈壁集料膏體充填粒級優化. 中國有色金屬學報, 2016, 26(7):1552
Yang L H, Wang H J, Wu A X, et al. Gradation optimization of unclassified tailings paste with Gobi aggregates. Chin J Nonferrous Met, 2016, 26(7): 1552
|
[26] |
Durgun M Y, Atahan H N. Rheological and fresh properties of reduced fine content self-compacting concretes produced with different particle sizes of nano SiO2. Constr Build Mater, 2017, 142: 431 doi: 10.1016/j.conbuildmat.2017.03.098
|
[27] |
Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol, 1980, 12(4): 214 doi: 10.1080/00224065.1980.11980968
|
[28] |
Castro I A, Silva R S F, Tirapegui J, et al. Simultaneous optimization of response variables in protein mixture formulation: Constrained simplex method approach. Int J Food Sci Technol, 2003, 38(2): 103 doi: 10.1046/j.1365-2621.2003.00650.x
|
[29] |
Mondal B, Srivastava V C, Mall I D. Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis. J Environ Sci Heal A, 2012, 47(13): 2040 doi: 10.1080/10934529.2012.695675
|
[30] |
Yin S H, Wu A X, Hu K J, et al. The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner Eng, 2012, 35: 61 doi: 10.1016/j.mineng.2012.04.008
|
[31] |
Li J J, Yilmaz E, Cao S. Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill. Minerals, 2020, 10(10): 922 doi: 10.3390/min10100922
|
[32] |
王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519
Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519
|
[33] |
Vishalakshi K P, Revathi V, Sivamurthy Reddy S. Effect of type of coarse aggregate on the strength properties and fracture energy of normal and high strength concrete. Eng Fract Mech, 2018, 194: 52 doi: 10.1016/j.engfracmech.2018.02.029
|
[34] |
Jia J Y, Gu X L. Effects of coarse aggregate surface morphology on aggregate-mortar interface strength and mechanical properties of concrete. Constr Build Mater, 2021, 294: 123515 doi: 10.1016/j.conbuildmat.2021.123515
|