Citation: | WANG Zhi-peng, LI Rui, ZHANG Mei, GUO Min. Interface modification and performance optimization of SnO2 based perovskite solar cells[J]. Chinese Journal of Engineering, 2023, 45(2): 263-277. doi: 10.13374/j.issn2095-9389.2021.08.13.004 |
[1] |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
|
[2] |
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 doi: 10.1038/srep00591
|
[3] |
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13(7): 460 doi: 10.1038/s41566-019-0398-2
|
[4] |
National Renewable Energy Laboratory. Best research-cell efficiencies [J/OL]. Sciencepaper Online (2019-08-02) [2021-08-13].https://www.nrel.gov/ pv/assets/pdfs/best-research-cell-efficiencies
|
[5] |
Li R, Zhang H Y, Han X, et al. Efficient nanorod array perovskite solar cells: A suitable structure for high strontium substitution in nature. ACS Appl Mater Interfaces, 2020, 12(9): 10515 doi: 10.1021/acsami.9b22556
|
[6] |
Zhang H Y, Li R, Zhang M, et al. The effect of SrI2 substitution on perovskite film formation and its photovoltaic properties via two different deposition methods. Inorg Chem Front, 2018, 5(6): 1354 doi: 10.1039/C8QI00131F
|
[7] |
Zhang H Y, Li R, Liu W W, et al. Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. Int J Miner Metall Mater, 2019, 26(4): 387 doi: 10.1007/s12613-019-1748-2
|
[8] |
杜晨, 馬瑞新, 王成彥, 等. 鈣鈦礦電池用碘化鉛的合成與性能. 工程科學學報, 2019, 41(4):454
Du C, Ma R X, Wang C Y, et al. Synthesis and properties of lead iodide for perovskite solar cells. Chin J Eng, 2019, 41(4): 454
|
[9] |
朱彧, 杜晨, 王碩, 等. 鈣鈦礦太陽能電池穩定性研究進展. 工程科學學報, 2020, 42(1):16
Zhu Y, Du C, Wang S, et al. Research progress on the stability of perovskite solar cells. Chin J Eng, 2020, 42(1): 16
|
[10] |
Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344 doi: 10.1126/science.1243167
|
[11] |
Son D Y, Im J H, Kim H S, et al. 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system. J Phys Chem C, 2014, 118(30): 16567 doi: 10.1021/jp412407j
|
[12] |
Yan J J, Lin Z C, Cai Q B, et al. Choline chloride-modified SnO2 achieving high output voltage in MAPbI3 perovskite solar cells. ACS Appl Energy Mater, 2020, 3(4): 3504 doi: 10.1021/acsaem.0c00038
|
[13] |
Yi H M, Duan L P, Haque F, et al. Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability. J Power Sources, 2020, 466: 228320 doi: 10.1016/j.jpowsour.2020.228320
|
[14] |
Zhang S C, Si H N, Fan W Q, et al. Graphdiyne: bridging SnO2 and perovskite in planar solar cells. Angew Chem Int Ed Engl, 2020, 59(28): 11573 doi: 10.1002/anie.202003502
|
[15] |
Feng J S, Yang Z, Yang D, et al. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy, 2017, 36: 1 doi: 10.1016/j.nanoen.2017.04.010
|
[16] |
Shin S S, Yang W S, Noh J H, et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100?℃. Nat Commun, 2015, 6: 7410 doi: 10.1038/ncomms8410
|
[17] |
Shin S S, Yeom E J, Yang W S, et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science, 2017, 356(6334): 167 doi: 10.1126/science.aam6620
|
[18] |
Bera A, Wu K W, Sheikh A, et al. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J Phys Chem C, 2014, 118(49): 28494 doi: 10.1021/jp509753p
|
[19] |
Wang T Y, Tai Q D, Guo X Y, et al. Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett, 2020, 5(6): 1741 doi: 10.1021/acsenergylett.0c00526
|
[20] |
Tiwana P, Docampo P, Johnston M B, et al. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano, 2011, 5(6): 5158 doi: 10.1021/nn201243y
|
[21] |
Liu P Y, Wang W, Liu S M, et al. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv Energy Mater, 2019, 9(13): 1803017 doi: 10.1002/aenm.201803017
|
[22] |
Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104(6): 063903 doi: 10.1063/1.4864778
|
[23] |
Chen B, Yang M J, Priya S, et al. Origin of J-V hysteresis in perovskite solar cells. J Phys Chem Lett, 2016, 7(5): 905 doi: 10.1021/acs.jpclett.6b00215
|
[24] |
Li Y, Zhu J, Huang Y, et al. Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Adv, 2015, 5(36): 28424 doi: 10.1039/C5RA01540E
|
[25] |
Ke W J, Fang G J, Liu Q, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc, 2015, 137(21): 6730 doi: 10.1021/jacs.5b01994
|
[26] |
Yoo J J, Seo G, Chua M R, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590(7847): 587 doi: 10.1038/s41586-021-03285-w
|
[27] |
Jiang Q, Zhang X W, You J B. SnO2: A wonderful electron transport layer for perovskite solar cells. Small, 2018, 14(31): e1801154 doi: 10.1002/smll.201801154
|
[28] |
Jarzebski Z M, Morton J P. Physical properties of SnO2 materials: III. optical properties. J Electrochem Soc, 1976, 123(10): 333C doi: 10.1149/1.2132647
|
[29] |
Chen Y C, Meng Q, Zhang L R, et al. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. J Energy Chem, 2019, 35: 144 doi: 10.1016/j.jechem.2018.11.011
|
[30] |
Jiang Q, Chu Z M, Wang P Y, et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater, 2017, 29(46): 1703852 doi: 10.1002/adma.201703852
|
[31] |
Jiang Q, Zhang L Q, Wang H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2017, 2: 16177 doi: 10.1038/nenergy.2016.177
|
[32] |
Jung K H, Seok J Y, Lee S, et al. Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. J Mater Chem A, 2017, 5(47): 24790 doi: 10.1039/C7TA08040A
|
[33] |
Yang G, Chen C, Yao F, et al. Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Adv Mater, 2018, 30(14): e1706023 doi: 10.1002/adma.201706023
|
[34] |
Liu H R, Chen Z L, Wang H B, et al. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J Mater Chem A, 2019, 7(17): 10636 doi: 10.1039/C8TA12561A
|
[35] |
Liu Q, Zhang X, Li C Y, et al. Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells. Appl Phys Lett, 2019, 115(14): 143903 doi: 10.1063/1.5118679
|
[36] |
Wang C L, Guan L, Zhao D W, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett, 2017, 2(9): 2118 doi: 10.1021/acsenergylett.7b00644
|
[37] |
Lv Y H, Wang P, Cai B, et al. Facile fabrication of SnO2 nanorod arrays films as electron transporting layer for perovskite solar cells. Sol RRL, 2018, 2(9): 1800133 doi: 10.1002/solr.201800133
|
[38] |
Gao C M, Yuan S, Cao B Q, et al. SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells. Chem Eng J, 2017, 325: 378 doi: 10.1016/j.cej.2017.05.085
|
[39] |
Roose B, Baena J P C, G?del K C, et al. Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy, 2016, 30: 517 doi: 10.1016/j.nanoen.2016.10.055
|
[40] |
Liu X, Tsai K W, Zhu Z L, et al. A low-temperature, solution processable tin oxide electron-transporting layer prepared by the dual-fuel combustion method for efficient perovskite solar cells. Adv Mater Interfaces, 2016, 3(13): 1600122 doi: 10.1002/admi.201600122
|
[41] |
Bu T L, Li J, Zheng F, et al. Universal passivation strategy to slot-Die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat Commun, 2018, 9: 4609 doi: 10.1038/s41467-018-07099-9
|
[42] |
Chen J Y, Chueh C C, Zhu Z L, et al. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Sol Energy Mater Sol Cells, 2017, 164: 47 doi: 10.1016/j.solmat.2017.02.008
|
[43] |
Yang D, Yang R X, Wang K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun, 2018, 9: 3239 doi: 10.1038/s41467-018-05760-x
|
[44] |
Ahmad W, Liu D T, Ahmad W, et al. Physisorption of oxygen in SnO2 nanoparticles for perovskite solar cells. IEEE J Photovolt, 2019, 9(1): 200 doi: 10.1109/JPHOTOV.2018.2877002
|
[45] |
Ji J, Liu X, Jiang H R, et al. Two-stage ultraviolet degradation of perovskite solar cells induced by the oxygen vacancy-Ti4+ states. iScience, 2020, 23(4): 101013 doi: 10.1016/j.isci.2020.101013
|
[46] |
Ren X D, Yang D, Yang Z, et al. Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces, 2017, 9(3): 2421 doi: 10.1021/acsami.6b13362
|
[47] |
Akin S. Hysteresis-free planar perovskite solar cells with a breakthrough efficiency of 22% and superior operational stability over 2000 H. ACS Appl Mater Interfaces, 2019, 11(43): 39998 doi: 10.1021/acsami.9b13876
|
[48] |
Roose B, Friend R H. Extrinsic electron concentration in SnO2 electron extracting contact in lead halide perovskite solar cells. Adv Mater Interfaces, 2019, 6(5): 1801788 doi: 10.1002/admi.201801788
|
[49] |
Yang G, Lei H W, Tao H, et al. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small, 2017, 13(2): 1601769 doi: 10.1002/smll.201601769
|
[50] |
Wang E Q, Chen P, Yin X T, et al. Tailoring electronic properties of SnO2 quantum dots via aluminum addition for high-efficiency perovskite solar cells. Sol RRL, 2019, 3(5): 1970055 doi: 10.1002/solr.201970055
|
[51] |
Jiang E S, Ai Y Q, Yan J, et al. Phosphate-passivated SnO2 electron transport layer for high-performance perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11(40): 36727 doi: 10.1021/acsami.9b11817
|
[52] |
Zhang X, Shi Z J, Lu H Z, et al. Highly efficient planar perovskite solar cells via acid-assisted surface passivation. J Mater Chem A, 2019, 7(39): 22323 doi: 10.1039/C9TA08042B
|
[53] |
Du J H, Feng L P, Guo X, et al. Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/perovskite interface. J Power Sources, 2020, 455: 227974 doi: 10.1016/j.jpowsour.2020.227974
|
[54] |
Xiong L B, Qin M C, Yang G, et al. Performance enhancement of high temperature SnO2-based planar perovskite solar cells: Electrical characterization and understanding of the mechanism. J Mater Chem A, 2016, 4(21): 8374 doi: 10.1039/C6TA01839D
|
[55] |
Song Z L, Bi W B, Zhuang X M, et al. Low-temperature electron beam deposition of Zn-SnOx for stable and flexible perovskite solar cells. Sol RRL, 2020, 4(2): 1900266 doi: 10.1002/solr.201900266
|
[56] |
Gong H, Wang Y J, Teo S C, et al. Interaction between thin-film tin oxide gas sensor and five organic vapors. Sens Actuat B Chem, 1999, 54(3): 232 doi: 10.1016/S0925-4005(99)00119-7
|
[57] |
Ai Y Q, Liu W Q, Shou C H, et al. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells. Sol Energy, 2019, 194: 541 doi: 10.1016/j.solener.2019.11.004
|
[58] |
Hong J A, Jung E D, Yu J C, et al. Improved efficiency of perovskite solar cells using a nitrogen-doped graphene-oxide-treated tin oxide layer. ACS Appl Mater Interfaces, 2020, 12(2): 2417 doi: 10.1021/acsami.9b17705
|
[59] |
Hui W, Yang Y G, Xu Q, et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv Mater, 2020, 32(4): e1906374 doi: 10.1002/adma.201906374
|
[60] |
Chen J B, Dong H, Zhang L, et al. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%. J Mater Chem A, 2020, 8(5): 2644 doi: 10.1039/C9TA11344D
|
[61] |
Choi K, Lee J, Kim H I, et al. Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ Sci, 2018, 11(11): 3238 doi: 10.1039/C8EE02242A
|
[62] |
Cao T, Chen K, Chen Q, et al. Fullerene derivative-modified SnO2 electron transport layer for highly efficient perovskite solar cells with efficiency over 21. ACS Appl Mater Interfaces, 2019, 11(37): 33825 doi: 10.1021/acsami.9b09238
|
[63] |
Jung E H, Chen B, Bertens K, et al. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett, 2020, 5(9): 2796 doi: 10.1021/acsenergylett.0c01566
|
[64] |
Deng F, Li X T, Lv X D, et al. Low-temperature processing all-inorganic carbon-based perovskite solar cells up to 11.78% efficiency via alkali hydroxides interfacial engineering. ACS Appl Energy Mater, 2020, 3(1): 401
|
[65] |
Hou M H, Zhang H J, Wang Z, et al. Enhancing efficiency and stability of perovskite solar cells via a self-assembled dopamine interfacial layer. ACS Appl Mater Interfaces, 2018, 10(36): 30607 doi: 10.1021/acsami.8b10332
|
[66] |
Xia H R, Ma Z, Xiao Z, et al. Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells. Org Electron, 2019, 75: 105415 doi: 10.1016/j.orgel.2019.105415
|
[67] |
Chen J Z, Zhao X, Kim S G, et al. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv Mater, 2019, 31(39): e1902902 doi: 10.1002/adma.201902902
|
[68] |
Tumen-Ulzii G, Matsushima T, Klotz D, et al. Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Commun Mater, 2020, 1: 31 doi: 10.1038/s43246-020-0028-z
|
[69] |
Pang S Z, Zhang C F, Zhang H R, et al. Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers. Appl Surf Sci, 2020, 507: 145099 doi: 10.1016/j.apsusc.2019.145099
|
[70] |
He L, Lv Z, Jiang H P, et al. Sandwich-like electron transporting layer to achieve highly efficient perovskite solar cells. J Power Sources, 2020, 453: 227876 doi: 10.1016/j.jpowsour.2020.227876
|
[71] |
Wang H, Li F B, Wang P, et al. Chlorinated fullerene dimers for interfacial engineering toward stable planar perovskite solar cells with 22.3% efficiency. Adv Energy Mater, 2020, 10(21): 2000615 doi: 10.1002/aenm.202000615
|
[72] |
Wang Z, Kamarudin M A, Huey N C, et al. Interfacial sulfur functionalization anchoring SnO2 and CH3NH3PbI3 for enhanced stability and trap passivation in perovskite solar cells. ChemSusChem, 2018, 11(22): 3941 doi: 10.1002/cssc.201801888
|
[73] |
Zhao B X, Niu G D, Dong Q S, et al. The role of interface between electron transport layer and perovskite in halogen migration and stabilizing perovskite solar cells with Cs4SnO4. J Mater Chem A, 2018, 6(46): 23797 doi: 10.1039/C8TA09382B
|
[74] |
Zhong M Y, Liang Y Q, Zhang J Q, et al. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer. J Mater Chem A, 2019, 7(12): 6659 doi: 10.1039/C9TA00398C
|
[75] |
Agiorgousis M L, Sun Y Y, Zeng H, et al. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J Am Chem Soc, 2014, 136(41): 14570 doi: 10.1021/ja5079305
|
[76] |
Steirer K X, Schulz P, Teeter G, et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett, 2016, 1(2): 360 doi: 10.1021/acsenergylett.6b00196
|
[77] |
Hu H L, Qin M C, Fong P W K, et al. Perovskite quantum wells formation mechanism for stable efficient perovskite photovoltaics-A real-time phase-transition study. Adv Mater, 2021, 33(7): e2006238 doi: 10.1002/adma.202006238
|
[78] |
Yang I S, Park N G. Dual additive for simultaneous improvement of photovoltaic performance and stability of perovskite solar cell. Adv Funct Mater, 2021, 31(20): 2100396 doi: 10.1002/adfm.202100396
|
[79] |
Jang Y W, Lee S, Yeom K M, et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat Energy, 2021, 6(1): 63 doi: 10.1038/s41560-020-00749-7
|
[80] |
Qin P L, Zhang J L, Yang G, et al. Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells. J Mater Chem A, 2019, 7(4): 1824 doi: 10.1039/C8TA09026B
|
[81] |
Hou J, Deng F, Wu Q B, et al. Ethylenediamine chlorides additive assisting formation of high-quality formamidinium-caesium perovskite film with low trap density for efficient solar cells. J Power Sources, 2020, 449: 227484 doi: 10.1016/j.jpowsour.2019.227484
|
[82] |
Chen Y C, Meng Q, Xiao Y Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11(47): 44101 doi: 10.1021/acsami.9b13648
|
[83] |
Ke W J, Xiao C X, Wang C L, et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Adv Mater, 2016, 28(26): 5214 doi: 10.1002/adma.201600594
|
[84] |
Lin H S, Lee J M, Han J Y, et al. Denatured M13 bacteriophage-templated perovskite solar cells exhibiting high efficiency. Adv Sci, 2020, 7(20): 2000782 doi: 10.1002/advs.202000782
|
[85] |
Liang L S, Luo H T, Hu J J, et al. Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv Energy Mater, 2020, 10(14): 2000197 doi: 10.1002/aenm.202000197
|
[86] |
Yang X Y, Fu Y Q, Su R, et al. Superior carrier lifetimes exceeding 6 μs in polycrystalline halide perovskites. Adv Mater, 2020, 32(39): 2002585 doi: 10.1002/adma.202002585
|
[87] |
Wang Z P, Lin Q Q, Chmiel F P, et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat Energy, 2017, 2: 17135 doi: 10.1038/nenergy.2017.135
|
[88] |
Lu H Z, Liu Y H, Ahlawat P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 2020, 370(6512): eabb8985 doi: 10.1126/science.abb8985
|
[89] |
Yang N, Zhu C, Chen Y H, et al. An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation. Energy Environ Sci, 2020, 13(11): 4344 doi: 10.1039/D0EE01736A
|