Citation: | TONG Jia-wei, PENG Rui-tao, HAO Xiu-qing, ZHAO Lin-feng, CHEN Mei-liang. Tribological properties of ionic liquid modified MWCNTs, MoS2, and their composite nanofluids[J]. Chinese Journal of Engineering, 2023, 45(2): 286-294. doi: 10.13374/j.issn2095-9389.2021.08.05.004 |
[1] |
Ding Z S, Sun G X, Guo M X, et al. Effect of phase transition on micro-grinding-induced residual stress. J Mater Process Technol, 2020, 281: 116647 doi: 10.1016/j.jmatprotec.2020.116647
|
[2] |
Singh H, Sharma V S, Singh S, et al. Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI. J Manuf Process, 2019, 39: 241 doi: 10.1016/j.jmapro.2019.02.004
|
[3] |
Qureshi M Z A, Bilal S, Chu Y M, et al. Physical impact of nano-layer on nano-fluid flow due to dispersion of magnetized carbon nano-materials through an absorbent channel with thermal analysis. J Mol Liq, 2021, 325: 115211 doi: 10.1016/j.molliq.2020.115211
|
[4] |
黃瑩瑩, 李庚輝, 趙博, 等. V2O5/MXene納米復合材料制備及儲能性能. 工程科學學報, 2020, 42(8):1018
Huang Y Y, Li G H, Zhao B, et al. Preparation and energy storage properties of V2O5/MXene nanocomposites. Chin J Eng, 2020, 42(8): 1018
|
[5] |
Saad I, Maalej S, Zaghdoudi M C. Electrohydrodynamic effects on a nanofluid-filled flat heat pipe. Therm Sci Eng Prog, 2020, 16: 100426 doi: 10.1016/j.tsep.2019.100426
|
[6] |
Khatai S, Kumar R, Sahoo A K, et al. Metal-oxide based nanofluid application in turning and grinding processes: A comprehensive review. Mater Today Proc, 2020, 26: 1707 doi: 10.1016/j.matpr.2020.02.360
|
[7] |
Fukushima T, Kosaka A, Ishimura Y, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 2003, 300(5628): 2072 doi: 10.1126/science.1082289
|
[8] |
潘文筱, 張冬菊, 孫慧, 等. 碳納米管與咪唑類離子液體相互作用機制的理論研究. 中國科學:化學, 2011, 41(1):51 doi: 10.1360/032010-22
Pan W X, Zhang D J, Sun H, et al. Theoretical study of the interaction mechanism between single-walled carbon nanotubes and imidazolium-based ionic liquids. Sci Sin (Chimica)
|
[9] |
Maiyelvaganan K R, Kamalakannan S, Prakash M. Adsorption of ionic liquids on carbonaceous surfaces: The effect of curvature on selective anion···π and cation···π interactions. Appl Surf Sci, 2019, 495: 143538 doi: 10.1016/j.apsusc.2019.143538
|
[10] |
王冠石, 王小永. 添加中低濃度離子液體[bmim][BF4]對吐溫-20臨界膠束濃度和膠束結構的影響. 化學通報, 2017, 80(8):777
Wang G S, Wang X Y. Influence of medium-low concentration of ionic liquid[bmim][BF4]on critical micellization concentration and micelle structures. Chemistry, 2017, 80(8): 777
|
[11] |
Che Q L, Li H, Zhang L G, et al. Role of carbon nanotubes on growth of a nanostructured double-deck tribofilm yielding excellent self-lubrication performance. Carbon, 2020, 161: 445 doi: 10.1016/j.carbon.2020.01.091
|
[12] |
Junankar A A, Parate S R, Dethe P K, et al. A Review: Enhancement of turning process performance by effective utilization of hybrid nanofluid and MQL. Mater Today Proc, 2021, 38: 44 doi: 10.1016/j.matpr.2020.05.603
|
[13] |
Peng R T, Tong J W, Zhao L F, et al. Molecular dynamics study on the adsorption synergy of MWCNTs/MoS2 nanofluids and its influence of internal-cooling grinding surface integrity. Appl Surf Sci, 2021, 563: 150312 doi: 10.1016/j.apsusc.2021.150312
|
[14] |
鄧凌峰, 彭輝艷, 覃昱焜, 等. 碳納米管與石墨烯協同改性天然石墨及其電化學性能. 材料工程, 2017, 45(4):121
Deng L F, Peng H Y, Qin Y K, et al. Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance. J Mater Eng, 2017, 45(4): 121
|
[15] |
Li K, Liu Q F, Cheng H F, et al. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochimica Acta A Mol Biomol Spectrosc, 2021, 249: 119286 doi: 10.1016/j.saa.2020.119286
|
[16] |
Shi S C, Wu J Y, Huang T F. Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant. Opt Quantum Electron, 2016, 48(10): 1
|
[17] |
Patil S S, Koinkar P M, Dhole S D, et al. Influence of high-energy electron irradiation on field emission properties of multi-walled carbon nanotubes (MWCNTs) films. Phys B Condens Matter, 2011, 406(9): 1809 doi: 10.1016/j.physb.2011.02.033
|
[18] |
Najmaei S, Liu Z, Ajayan P M, et al. Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl Phys Lett, 2012, 100(1): 013106 doi: 10.1063/1.3673907
|
[19] |
Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: Evolution of raman scattering. Adv Funct Mater, 2012, 22(7): 1385 doi: 10.1002/adfm.201102111
|
[20] |
Hou J J, Sui H, Du J Z, et al. Synergistic effect of silica nanofluid and biosurfactant on bitumen recovery from unconventional oil. J Dispers Sci Technol, 2020: 1
|
[21] |
孫海杰, 陳建軍, 黃振旭, 等. 阿拉伯樹膠修飾的納米Ru–Zn催化劑上苯選擇加氫制環己烯. 無機化學學報, 2016, 32(2):202
Sun H J, Chen J J, Huang Z X, et al. Selective hydrogenation of benzene to cyclohexene over the nano-sized Ru–Zn catalyst modified by Arabic gum. Chin J Inorg Chem, 2016, 32(2): 202
|
[22] |
El?i?ek H, Güzel B. Effect of shear-thinning behavior on flow regimes in Taylor-Couette flows. J Non Newton Fluid Mech, 2020, 279: 104277 doi: 10.1016/j.jnnfm.2020.104277
|
[23] |
Zhu Y F, Zamani M, Xu G Y, et al. A comprehensive experimental investigation of dynamic viscosity of MWCNT–WO3/water–ethylene glycol antifreeze hybrid nanofluid. J Mol Liq, 2021, 333: 115986 doi: 10.1016/j.molliq.2021.115986
|
[24] |
Vadasz P. Heat conduction in nanofluid suspensions. J Heat Transf, 2006, 128(5): 465 doi: 10.1115/1.2175149
|
[25] |
解國新, 雒建斌, 郭丹, 等. 普通離子液體潤滑劑的潤滑成膜性能研究. 機械工程學報, 2011, 47(11):82 doi: 10.3901/JME.2011.11.082
Xie G X, Luo J B, Guo D, et al. Film forming characteristics of common ionic liquid lubricants. J Mech Eng, 2011, 47(11): 82 doi: 10.3901/JME.2011.11.082
|
[26] |
Han X, Thrush S J, Zhang Z P, et al. Tribological characterization of ZnO nanofluids as fastener lubricants. Wear, 2021, 468-469: 203592 doi: 10.1016/j.wear.2020.203592
|
[27] |
劉維民, 薛群基, 周靜芳, 等. 納米顆粒的抗磨作用及作為磨損修復添加劑的應用研究. 中國表面工程, 2001, 14(3):25
Liu W M, Xue Q J, Zhou J F, et al. Antiwear properties of nanoparticles and application study of nanoparticles as additives in the wear-repairing agent. China Surf Eng, 2001, 14(3): 25
|
[28] |
Upadhyay R K, Kumar A. Boundary lubrication properties and contact mechanism of carbon/MoS2 based nanolubricants under steel/steel contact. Colloid Interface Sci Commun, 2019, 31: 100186 doi: 10.1016/j.colcom.2019.100186
|
[29] |
王曉麗, 徐濱士, 許一, 等. 納米銅潤滑油添加劑的摩擦磨損特性及其機理研究. 摩擦學學報, 2007, 27(3):235
Wang X L, Xu B S, Xu Y, et al. Study on friction and wear behavior and mechanism of nano-Cu additive in lubrication oils. Tribology, 2007, 27(3): 235
|