<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Yang, ZHANG Jian-liang, YUAN Xiang, LIU Zheng-jian, LI Fei, ZHENG An-yang, LI Zhan-guo. Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite[J]. Chinese Journal of Engineering, 2023, 45(1): 82-90. doi: 10.13374/j.issn2095-9389.2021.08.05.003
Citation: LI Yang, ZHANG Jian-liang, YUAN Xiang, LIU Zheng-jian, LI Fei, ZHENG An-yang, LI Zhan-guo. Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite[J]. Chinese Journal of Engineering, 2023, 45(1): 82-90. doi: 10.13374/j.issn2095-9389.2021.08.05.003

Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite

doi: 10.13374/j.issn2095-9389.2021.08.05.003
More Information
  • Corresponding author: E-mail: liuzhengjian@ustb.edu.cn
  • Received Date: 2021-08-05
    Available Online: 2021-09-22
  • Publish Date: 2023-01-01
  • The amount of zinc-containing EAF dust has increased due to the increased proportion of galvanized steel scrap used in the electric arc furnace (EAF) steelmaking process. If the zinc in the EAF dust is not recycled, it will not only lead to a waste of valuable metal resources but also results in environmental pollution. Zinc is mainly present in the EAF dust in the form of zinc ferrite (ZnFe2O4). Zinc ferrite is a kind of spinel mineral that exhibits a crystal lattice of greater stability, which increases the difficulty of recycling valuable elements such as zinc and iron from zinc-containing EAF dust. To further clarify the carbothermic reduction process of zinc ferrite, this paper studies the kinetics of the non-isothermal carbothermal reduction of zinc ferrite and its reduction reaction mechanism. The phase transition process of the zinc ferrite carbothermal reduction reaction was analyzed via the XRD results of the reduced zinc ferrite. FeO0.85·xZnO was found at 950 °C when Fe3+ was reduced to Fe2+. The relationship between the conversion and conversion rate of the zinc ferrite carbothermal reduction process is discussed. The reduction process can be divided into three stages, and the conversion of the second stage changes greatly (0.085–0.813). Finally, the kinetics of the second stage of the carbothermic reduction of the zinc ferrite at different heating rates was evaluated through the isoconversional method and the master curve fitting method. The activation energy of the second stage is between 331.01–490.04 kJ·mol?1, and the average activation energy is 362.16 kJ·mol?1. The large change in the activation energy in the second stage indicates that the reactions in this stage are more complicated, and there are obvious differences in the activation energy between the reactions. The secondary chemical reaction is the main rate-controlling link in the second stage, and the kinetics equation of the second stage is determined.

     

  • loading
  • [1]
    田瑋, 彭犇, 王晟, 等. 含鋅電爐粉塵處理技術的研究進展. 環境工程, 2019, 37(2):144

    Tian W, Peng B, Wang S, et al. Research progress of treatment technologies for Zn-containing electric arc furnaces dust. Environ Eng, 2019, 37(2): 144
    [2]
    張金元, 程欣, 宋騰飛, 等. 我國鋼鐵行業發展狀況分析及趨勢預測. 冶金經濟與管理, 2021(4):19

    Zhang J Y, Cheng X, Song T F, et al. Analysis and forecast of the development of China's iron and steel industry. Yejin Jingji Yu Guanli, 2021(4): 19
    [3]
    王飛, 毛瑞, 茅沈棟, 等. 含鋅粉塵冷固結團塊高溫自還原過程分析. 鋼鐵研究學報, 2020, 32(7):626

    Wang F, Mao R, Mao S D, et al. Analysis of self-reduction process of cold-bonded briquettes made from zinc-bearing dust at high temperature. J Iron Steel Res, 2020, 32(7): 626
    [4]
    張龍強. 雙碳背景下百億噸鋼鐵積蓄的廢鋼資源供給分析. 中國冶金文摘, 2021, 35(4):7

    Zhang L Q. Analysis of Chinese ten billion tons of scrap steel resource supply under the dual-carbon background. China Metals Digest, 2021, 35(4): 7
    [5]
    譚宇佳, 郭宇峰, 姜濤, 等. 含鋅電爐粉塵處理工藝現狀及發展. 礦產綜合利用, 2017(3):44

    Tan Y J, Guo Y F, Jiang T, et al. Treatment technology and development of zinc electric arc furnace dust. Multipurp Util Miner Resour, 2017(3): 44
    [6]
    Al-Harahsheh M, Aljarrah M, Rummanah F, et al. Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. J Anal Appl Pyrolysis, 2017, 125: 50 doi: 10.1016/j.jaap.2017.04.019
    [7]
    Lanzerstorfer C. Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling. J Clean Prod, 2018, 174: 1 doi: 10.1016/j.jclepro.2017.10.312
    [8]
    劉琳, 趙強, 馮曉峰. 含鋅除塵灰鋅鐵分離研究. 鋼鐵研究學報, 2020, 32(8):714

    Liu L, Zhao Q, Feng X F. Study on separation of zinc and iron from dust ash containing zinc. J Iron Steel Res, 2020, 32(8): 714
    [9]
    Leclerc N, Meux E, Lecuire J M. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 2003, 70(1-3): 175 doi: 10.1016/S0304-386X(03)00079-3
    [10]
    Yu G, Peng N, Zhou L, et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues. Trans Nonferrous Met Soc China, 2015, 25(8): 2744 doi: 10.1016/S1003-6326(15)63899-7
    [11]
    許繼芳, 楊瑩, 郭恒睿, 等. CO還原氣氛下鐵酸鋅選擇性分解過程研究. 礦冶工程, 2019, 39(1):86 doi: 10.3969/j.issn.0253-6099.2019.01.022

    Xu J F, Yang Y, Guo H R, et al. Selective decomposition process of zinc ferrite in CO reducing atmosphere. Min Metall Eng, 2019, 39(1): 86 doi: 10.3969/j.issn.0253-6099.2019.01.022
    [12]
    Wang C, Guo Y F, Wang S, et al. Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting. Int J Miner Metall Mater, 2020, 27(1): 26 doi: 10.1007/s12613-019-1858-x
    [13]
    Tong L F, Hayes P. Mechanisms of the reduction of zinc ferrites in H2/N2 gas mixtures. Miner Process Extr Metall Rev, 2006, 28(2): 127 doi: 10.1080/08827500601012878
    [14]
    Tong L F. Reduction mechanisms and behaviour of zinc ferrite—Part 1: Pure ZnFe2O4. Miner Process Extr Metall, 2001, 110(1): 14 doi: 10.1179/mpm.2001.110.1.14
    [15]
    胡曉軍, 劉俊寶, 郭培民, 等. 鐵酸鋅氣體還原的熱力學分析. 工程科學學報, 2015, 37(4):429

    Hu X J, Liu J B, Guo P M, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO–CO2. Chin J Eng, 2015, 37(4): 429
    [16]
    Junca E, Oliveira J R, Restivo T A G, et al. Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J Therm Anal Calorim, 2016, 123(1): 631 doi: 10.1007/s10973-015-4973-6
    [17]
    Chen Y J, Wang Y Y, Peng N, et al. Isothermal reduction kinetics of zinc calcine under carbon monoxide. Trans Nonferrous Met Soc China, 2020, 30(8): 2274 doi: 10.1016/S1003-6326(20)65378-X
    [18]
    鄔桂婷, 劉維, 韓俊偉, 等. 鐵酸鋅還原–氧化選擇性分解行為研究. 礦冶工程, 2021, 41(1):80

    Wu G T, Liu W, Han J W, et al. Selective decomposition behavior of zinc ferrite by reduction and oxidation. Min Metall Eng, 2021, 41(1): 80
    [19]
    Wang X, Yang D J, Ju S H, et al. Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Trans Nonferrous Met Soc China, 2013, 23(12): 3808 doi: 10.1016/S1003-6326(13)62933-7
    [20]
    汪鑫, 鄧寅祥, 許繼芳, 等. 鐵酸鋅配碳選擇性還原的熱力學分析和試驗研究. 礦產綜合利用, 2020(2):167 doi: 10.3969/j.issn.1000-6532.2020.02.030

    Wang X, Deng Y X, Xu J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon. Multipurp Util Miner Resour, 2020(2): 167 doi: 10.3969/j.issn.1000-6532.2020.02.030
    [21]
    李洋, 張建良, 袁驤, 等. 電爐粉塵鋅元素回收利用基礎分析. 中國冶金, 2018, 28(11):16 doi: 10.13228/j.boyuan.issn1006-9356.20180123

    Li Y, Zhang J L, Yuan X, et al. Basic analysis on recovery and utilization of zinc in EAF dust. China Metall, 2018, 28(11): 16 doi: 10.13228/j.boyuan.issn1006-9356.20180123
    [22]
    Vlaev L T, Markovska I G, Lyubchev L A. Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta, 2003, 406(1-2): 1 doi: 10.1016/S0040-6031(03)00222-3
    [23]
    Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. J Therm Anal Calorim, 2016, 123(1): 773 doi: 10.1007/s10973-015-4972-7
    [24]
    Kou M Y, Zuo H B, Ning X J, et al. Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal. Energy, 2019, 188: 116030 doi: 10.1016/j.energy.2019.116030
    [25]
    Ren S, Zhang J L. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method. Thermochimica Acta, 2013, 561: 36 doi: 10.1016/j.tca.2013.03.040
    [26]
    Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 2000, 355(1-2): 239 doi: 10.1016/S0040-6031(00)00449-4
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (360) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频