Citation: | YE Qing, SONG Jie, HOU Kun, GUO Zhi-yuan, XU Gui-zhi, DENG Zhan-feng, LI Bao-rang. Review of hydrogen permeation in PEM water electrolysis[J]. Chinese Journal of Engineering, 2022, 44(7): 1274-1281. doi: 10.13374/j.issn2095-9389.2021.08.02.003 |
[1] |
Grigoriev S A, Fateev V N, Bessarabov D G, et al. Current status, research trends, and challenges in water electrolysis sience and technology. Int J Hydrog Energy, 2020, 45(49): 26036 doi: 10.1016/j.ijhydene.2020.03.109
|
[2] |
劉少名, 鄧占鋒, 徐桂芝, 等. 歐洲固體氧化物燃料電池(SOFC)產業化現狀. 工程科學學報, 2020, 42(3):278
Liu S M, Deng Z F, Xu G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe. Chin J Eng, 2020, 42(3): 278
|
[3] |
Kumar S S, Himabindu V. Hydrogen production by PEM water electrolysis-A review. Mater Sci Energy Technol, 2019, 2(3): 442
|
[4] |
Ayers K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes. Curr Opin Chem Eng, 2021, 33: 100719 doi: 10.1016/j.coche.2021.100719
|
[5] |
Koponen J, Kosonen A, Ruuskanen V, et al. Control and energy efficiency of PEM water electrolyzers in renewable energy systems. Int J Hydrog Energy, 2017, 42(50): 29648 doi: 10.1016/j.ijhydene.2017.10.056
|
[6] |
Suermann M, P?tru A, Schmidt T J, et al. High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. Int J Hydrog Energ, 2017, 42(17): 12076 doi: 10.1016/j.ijhydene.2017.01.224
|
[7] |
Lee B, Heo J, Kim S, et al. Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Convers Manag, 2018, 162: 139 doi: 10.1016/j.enconman.2018.02.041
|
[8] |
Sartory M, Walln?fer-Ogris E, Salman P, et al. Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar. Int J Hydrog Energy, 2017, 42(52): 30493 doi: 10.1016/j.ijhydene.2017.10.112
|
[9] |
Papakonstantinou G, Sundmacher K. H2 permeation through N117 and its consumption by IrOx in PEM water electrolyzers. Electrochem Commun, 2019, 108: 106578 doi: 10.1016/j.elecom.2019.106578
|
[10] |
Afshari E, Khodabakhsh S, Jahantigh N, et al. Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer. Int J Hydrog Energy, 2021, 46(19): 11029 doi: 10.1016/j.ijhydene.2020.10.180
|
[11] |
Siracusano S, Trocino S, Briguglio N, et al. Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells. J Power Sources, 2020, 468: 228390 doi: 10.1016/j.jpowsour.2020.228390
|
[12] |
Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renew Sustain Energy Rev, 2019, 111: 1 doi: 10.1016/j.rser.2019.05.007
|
[13] |
Frensch S H, Fouda-Onana F, Serre G, et al. Influence of the operation mode on PEM water electrolysis degradation. Int J Hydrog Energy, 2019, 44(57): 29889 doi: 10.1016/j.ijhydene.2019.09.169
|
[14] |
Schalenbach M, Hoefner T, Paciok P, et al. Gas permeation through nafion. part 1: Measurements. J Phys Chem C, 2015, 119(45): 25145
|
[15] |
Ito H, Maeda T, Nakano A, et al. Properties of Nafion membranes under PEM water electrolysis conditions. Int J Hydrog Energy, 2011, 36(17): 10527 doi: 10.1016/j.ijhydene.2011.05.127
|
[16] |
Battino R, Clever H L. The solubility of gases in liquids. Chem?Rev, 1966, 66(4): 395
|
[17] |
Mann R F, Amphlett J C, Peppley B A, et al. Henry's Law and the solubilities of reactant gases in the modelling of PEM fuel cells. J Power Sources, 2006, 161(2): 768 doi: 10.1016/j.jpowsour.2006.05.054
|
[18] |
Wise D L, Houghton G. The diffusion coefficients of ten slightly soluble gases in water at 10?60 ℃. Chem Eng Sci, 1966, 21(11): 999 doi: 10.1016/0009-2509(66)85096-0
|
[19] |
Sakai T, Takenaka H, Wakabayashi N, et al. Gas permeation properties of solid polymer electrolyte (SPE) membranes. J Electrochem Soc, 1985, 132(6): 1328 doi: 10.1149/1.2114111
|
[20] |
Yoshitake M, Tamura M, Yoshida N, et al. Studies of perfluorinated ion exchange membranes for polymer electrolyte fuel cells. Denki Kagaku, 1996, 64(6): 727 doi: 10.5796/kogyobutsurikagaku.64.727
|
[21] |
Kocha S S, Yang J D, Yi J S. Characterization of gas crossover and its implications in PEM fuel cells. Aiche J, 2006, 52(5): 1916 doi: 10.1002/aic.10780
|
[22] |
Broka K, Ekdunge P. Oxygen and hydrogen permeation properties and water uptake of Nafion? 117 membrane and recast film for PEM fuel cell. J Appl Electrochem, 1997, 27(2): 117 doi: 10.1023/A:1018469520562
|
[23] |
Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy, 2005, 78(5): 661 doi: 10.1016/j.solener.2004.09.003
|
[24] |
Sakai T, Takenaka H, Torikai E. Gas diffusion in the dried and hydrated nafions. J Electrochem Soc, 1986, 133(1): 88 doi: 10.1149/1.2108551
|
[25] |
Chiou J S, Paul D R. Gas permeation in a dry Nafion membrane. Ind Eng Chem Res, 1988, 27(11): 2161 doi: 10.1021/ie00083a034
|
[26] |
Mohamed H F M, Ito K, Kobayashi Y, et al. Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells. Polymer, 2008, 49(13-14): 3091 doi: 10.1016/j.polymer.2008.05.003
|
[27] |
Schalenbach M, Hoeh M A, Gostick J T, et al. Gas?permeation through?nafion. part 2: Resistor network model. J Phys Chem C, 2015, 119(45): 25156
|
[28] |
Trinke P, Bensmann B, Reichstein S, et al. Hydrogen permeation in PEM electrolyzer cells operated at asymmetric pressure conditions. J Electrochem Soc, 2016, 163(11): F3164 doi: 10.1149/2.0221611jes
|
[29] |
Duan Q J, Wang H P, Benziger J. Transport of liquid water through Nafion membranes. J Membr Sci, 2012, 392-393: 88 doi: 10.1016/j.memsci.2011.12.004
|
[30] |
Sellin R C, Mozet K, Ménage A, et al. Measuring electro-osmotic drag coefficients in PFSA membranes without any diffusion assumption. Int J Hydrog Energy, 2019, 44(45): 24905 doi: 10.1016/j.ijhydene.2019.07.076
|
[31] |
Wakita H, Kawabata N, Kani Y. Measurement of water permeation through membranes from extremely high hydraulic pressure to atmospheric pressure. Int J Hydrog Energy, 2019, 44(59): 31257 doi: 10.1016/j.ijhydene.2019.10.037
|
[32] |
Shin H S, Oh B S. Water transport according to temperature and current in PEM water electrolyzer. Int J Hydrog Energy, 2020, 45(1): 56 doi: 10.1016/j.ijhydene.2019.10.209
|
[33] |
Trinke P, Bensmann B, Hanke-Rauschenbach R. Current density effect on hydrogen permeation in PEM water electrolyzers. Int J Hydrog Energy, 2017, 42(21): 14355 doi: 10.1016/j.ijhydene.2017.03.231
|
[34] |
Schalenbach M, Carmo M, Fritz D L, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover. Int J Hydrog Energy, 2013, 38(35): 14921 doi: 10.1016/j.ijhydene.2013.09.013
|
[35] |
Grigoriev S A, Millet P, Korobtsev S V, et al. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. Int J Hydrog Energy, 2009, 34(14): 5986 doi: 10.1016/j.ijhydene.2009.01.047
|
[36] |
Ito H, Miyazaki N, Ishida M, et al. Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis. Int J Hydrog Energy, 2016, 41(45): 20439 doi: 10.1016/j.ijhydene.2016.08.119
|
[37] |
Han B, Mo J K, Kang Z Y, et al. Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2016, 188: 317 doi: 10.1016/j.electacta.2015.11.139
|
[38] |
Bromberger K, Ghinaiya J, Lickert T, et al. Hydraulic ex situ through-plane characterization of porous transport layers in PEM water electrolysis cells. Int J Hydrog Energy, 2018, 43(5): 2556 doi: 10.1016/j.ijhydene.2017.12.042
|
[39] |
St?hler M, St?hler A, Scheepers F, et al. Impact of porous transport layer compression on hydrogen permeation in PEM water electrolysis. Int J Hydrog Energy, 2020, 45(7): 4008 doi: 10.1016/j.ijhydene.2019.12.016
|
[40] |
Immerz C, Schweins M, Trinke P, et al. Experimental characterization of inhomogeneity in current density and temperature distribution along a single-channel PEM water electrolysis cell. Electrochimica Acta, 2018, 260: 582 doi: 10.1016/j.electacta.2017.12.087
|
[41] |
Olesen A C, Frensch S H, K?r S K. Towards uniformly distributed heat, mass and charge: A flow field design study for high pressure and high current density operation of PEM electrolysis cells. Electrochimica Acta, 2019, 293: 476 doi: 10.1016/j.electacta.2018.10.008
|
[42] |
Parra-Restrepo J, Bligny R, Dillet J, et al. Influence of the porous transport layer properties on the mass and charge transfer in a segmented PEM electrolyzer. Int J Hydrog Energy, 2020, 45(15): 8094 doi: 10.1016/j.ijhydene.2020.01.100
|
[43] |
Matsushima H, Kiuchi D, Fukunaka Y. Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field. Electrochimica Acta, 2009, 54(24): 5858 doi: 10.1016/j.electacta.2009.05.044
|
[44] |
Tanaka Y, Kikuchi K, Saihara Y, et al. Bubble visualization and electrolyte dependency of dissolving hydrogen in electrolyzed water using Solid-Polymer-Electrolyte. Electrochimica Acta, 2005, 50(25-26): 5229 doi: 10.1016/j.electacta.2005.01.062
|
[45] |
Paliwal S, Panda D, Bhaskaran S, et al. Lattice Boltzmann method to study the water-oxygen distributions in porous transport layer (PTL) of polymer electrolyte membrane (PEM) electrolyser. Int J Hydrog Energy, 2021, 46(44): 22747 doi: 10.1016/j.ijhydene.2021.04.112
|
[46] |
Zinser A, Papakonstantinou G, Sundmacher K. Analysis of mass transport processes in the anodic porous transport layer in PEM water electrolysers. Int J Hydrog Energy, 2019, 44(52): 28077 doi: 10.1016/j.ijhydene.2019.09.081
|
[47] |
Omrani R, Shabani B. Hydrogen crossover in proton exchange membrane electrolysers: The effect of current density, pressure, temperature, and compression. Electrochimica Acta, 2021, 377: 138085 doi: 10.1016/j.electacta.2021.138085
|
[48] |
Trinke P, Bensmann B, Hanke-Rauschenbach R. Experimental evidence of increasing oxygen crossover with increasing current density during PEM water electrolysis. Electrochem Commun, 2017, 82: 98 doi: 10.1016/j.elecom.2017.07.018
|