<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
MA Zhong-gui, XU Xiao-han, LIU Xue-er. Three analytical frameworks of causal inference and their applications[J]. Chinese Journal of Engineering, 2022, 44(7): 1231-1243. doi: 10.13374/j.issn2095-9389.2021.07.04.002
Citation: MA Zhong-gui, XU Xiao-han, LIU Xue-er. Three analytical frameworks of causal inference and their applications[J]. Chinese Journal of Engineering, 2022, 44(7): 1231-1243. doi: 10.13374/j.issn2095-9389.2021.07.04.002

Three analytical frameworks of causal inference and their applications

doi: 10.13374/j.issn2095-9389.2021.07.04.002
More Information
  • Corresponding author: E-mail: g_runeko@163.com
  • Received Date: 2021-07-04
    Available Online: 2021-10-19
  • Publish Date: 2022-07-01
  • Causality is a generic relationship between an effect and a cause that produces it. The causal relationship among things has been a research hotspot; however, the complexity of causality is sometimes far beyond our imagination. Although some causality problems seem easy to analyze, finding an exact answer may not be easy. Nevertheless, through the continuous innovation and development of empirical research methods in recent decades, we have had several clear analytical frameworks and effective methods on how to define and estimate causality. Exploring the causal effects among things is a promising research topic in many fields, such as statistics, computer science, and econometrics. With Joshua D. Angrist and Guido W. Imbens winning the Nobel Prize in economics for their methodological contributions to the analysis of causality in 2021, causal inference is expected to thrive in these fields. This paper briefly introduces the basic concepts involved in causal inference and its three analytical frameworks, namely, counterfactual framework (CF), potential outcome framework (POF), and structural causal model (SCM). Firstly, we introduce the origin of causal effects according to CF. Secondly, based on the counterfactual theory, two analysis frameworks are considered (POF and SCM), and we introduce the associated key theories and methods. The SCM explains the causal theory through mathematics and computable language, and it is a calculation model that clearly expresses hypotheses, propositions, and conclusions. It quantitatively analyzes the pair of cause variables under the premise that the cause and effect variables are known. The POF makes up for the missing potential results, such that the effect of the observational research is close to experimental research. The SCM is a causal inference method based on graph theory. It divides events into three levels: observation, intervention, and counterfactual. Through the “do” operation, the causal relationship at the intervention and counterfactual levels could be reduced to low-dimensional problems, which can be solved via statistical methods. Finally, the current application scenarios of causal inference in many fields are discussed in this paper, and the three analysis frameworks are compared.

     

  • loading
  • [1]
    Sabine G H, Russell B. A history of western philosophy and its connection with political and social circumstances from the earliest times to the present day. Am Hist Rev, 1946, 51(3): 485 doi: 10.2307/1840112
    [2]
    張大松, 孫國江. 論穆勒五法的方法論特征與價值. 華中師范大學學報(人文社會科學版), 2001, 40(6):19

    Zhang D S, Sun G J. On the methodological characteristic and value of mill’s five canons. J Central China Norm Univ (Humanit Soc Sci), 2001, 40(6): 19
    [3]
    應奇, 徐東舜. 休謨與分析性行動哲學的誕生—從“因果解釋”視角看. 天津社會科學, 2021, 12(2):57

    Ying Q, Xu D S. Hume and the birth of analytical action philosophy—from the point of “causal explanation”. Tianjin Soc Sci, 2021, 12(2): 57
    [4]
    Granger C W J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37(3): 424 doi: 10.2307/1912791
    [5]
    Heckman J J. Econometric causality. Int Statistical Rev, 2008, 76(1): 1 doi: 10.1111/j.1751-5823.2007.00024.x
    [6]
    Cook T D, Campbell D, Shadish W. Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin, 2002
    [7]
    Lazarsfeld P. Problems in methodology. Sociology Today: Problems and Prospects. New York: Basic Books, 1959
    [8]
    Hume D. An Enquiry Concerning Human Understanding, and Selections from A Treatise of Human Nature. Chicago: Open Court Publishing, 1912
    [9]
    Lewis D. Causation. J Philos, 1973, 70(17): 556 doi: 10.2307/2025310
    [10]
    Imbens G W, Rubin D B. Causal Inference for Statistics, Social, and Biomedical Sciences. New York: Cambridge University Press, 2015
    [11]
    Rubin D B. Bayesian inference for causal effects: The role of randomization. Ann Statist, 1978, 6(1): 34
    [12]
    Morgan S L, Winship C. Counterfactuals and Causal Inference Methods and Principles for Social Research. 2nd Ed. Cambridge: Cambridge University Press, 2014
    [13]
    Cochran W G, Chambers S P. The planning of observational studies of human populations. J Royal Stat Soc Ser A, 1965, 128(2): 234 doi: 10.2307/2344179
    [14]
    Hume D, Beauchamp T L. An Enquiry Concerning Human Understanding. Oxford: Clarendon Press, 1999
    [15]
    Mill J S. A System of Logic: in Collected Works of John Stuart Mill. Toronto: University of Toronto Press, 1973
    [16]
    Fisher R A. Statistical methods and scientific inference. J Institute Actuaries, 1957, 83(1): 64 doi: 10.1017/S002026810005126X
    [17]
    Neyman J S, Dabrowska D M, Speed T P. On the application of probability theory to agricultural experiments. essay on principles. section 9. Statist Sci, 1990, 5(4): 465
    [18]
    Rubin D B. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol, 1974, 66(5): 688 doi: 10.1037/h0037350
    [19]
    苗旺, 劉春辰, 耿直. 因果推斷的統計方法. 中國科學:數學, 2018, 48(12):1753 doi: 10.1360/N012018-00055

    Miao W, Liu C C, Geng Z. Statistical approaches for causal inference. Sci Sin (Math), 2018, 48(12): 1753 doi: 10.1360/N012018-00055
    [20]
    Rubin D B. Statistics and causal inference: Comment ifs have causal answers. J Am Stat Assoc, 1986, 81(396): 961
    [21]
    Sinclair B, McConnell M, Green D P. Detecting spillover effects: Design and analysis of multilevel experiments. Am J Political Sci, 2012, 56(4): 1055 doi: 10.1111/j.1540-5907.2012.00592.x
    [22]
    Bickel P J, Hammel E A, O’Connell J W. Sex bias in graduate admissions: Data from Berkeley. Science, 1975, 187(4175): 398 doi: 10.1126/science.187.4175.398
    [23]
    Greenland S, Pearl J, Robins J M. Confounding and collapsibility in causal inference. Statist Sci, 1999, 14(1): 29
    [24]
    Cochran W G, Rubin D B. Controlling bias in observational studies: A review. Sankhyā:The Indian Journal of Statistics,Series A, 1973, 35(4): 417
    [25]
    Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41 doi: 10.1093/biomet/70.1.41
    [26]
    Abadie A, Imbens G W. Matching on the estimated propensity score. Econometrica, 2016, 84(2): 781 doi: 10.3982/ECTA11293
    [27]
    Bahadori M T, Chalupka K, Choi E, et al. Causal regularization[J/OL]. ArXiv Preprint (2017-2-23) [2021-6-11].https://arxiv.org/abs/1702.02604
    [28]
    Lee B K, Lessler J, Stuart E A. Improving propensity score weighting using machine learning. Stat Med, 2010, 29(3): 337 doi: 10.1002/sim.3782
    [29]
    Rosenbaum P R. Model-based direct adjustment. J Am Stat Assoc, 1987, 82(398): 387 doi: 10.1080/01621459.1987.10478441
    [30]
    Imbens G W. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev Econ Stat, 2004, 86(1): 4 doi: 10.1162/003465304323023651
    [31]
    Robins J M, Rotnitzky A, Zhao L P. Estimation of regression coefficients when some regressors are not always observed. J Am stat Assoc, 1994, 89(427): 846 doi: 10.1080/01621459.1994.10476818
    [32]
    Hullsiek K H, Louis T A. Propensity score modeling strategies for the causal analysis of observational data. Biostatistics, 2002, 3(2): 179 doi: 10.1093/biostatistics/3.2.179
    [33]
    Pearl J. Causality: Models, Reasoning, and Inference, 2nd Ed. New York: Cambridge University Press, 2009
    [34]
    Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kaufmann, 1988
    [35]
    Spiegelhalter D J, Dawid A P, Lauritzen S L, et al. Bayesian Analysis in Expert Systems. Statistical Science, 1993, 8(3): 219
    [36]
    Blyth C R. On Simpson’s paradox and the sure-thing principle. J Am Stat Assoc, 1972, 67(338): 364 doi: 10.1080/01621459.1972.10482387
    [37]
    Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their application to expert systems. J Royal Stat Soc:Ser B (Methodol), 1988, 50(2): 157
    [38]
    Pearl J. Causality. New York: Cambridge University Press, 2000
    [39]
    Pearl J. Causal diagrams for empirical research. Biometrika, 1995, 82(4): 702
    [40]
    Greenland S, Pearl J. Adjustments and their consequences—collapsibility analysis using graphical models. Int Stat Rev, 2011, 79(3): 401 doi: 10.1111/j.1751-5823.2011.00158.x
    [41]
    Greenland S, Pearl J, Robins J M. Causal diagrams for epidemiologic research. Epidemiol (Camb Mass), 1999, 10(1): 37 doi: 10.1097/00001648-199901000-00008
    [42]
    趙西亮. 基本有用的計量經濟學. 北京: 北京大學出版社, 2017

    Zhao X L. Most Useful Science of Econometrics. Beijing: Peking University Press, 2017
    [43]
    Shimizu S, Hoyer P O, Hyvarinen A, et al. A linear non-gaussian acyclic model for causal discovery. J Mach Learn Res, 2006, 7(4): 2003
    [44]
    Hoyer P O, Shimizu S, Kerminen A J, et al. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int J Approx Reason, 2008, 49(2): 362 doi: 10.1016/j.ijar.2008.02.006
    [45]
    Cai R C, Qiao J, Zhang Z J, et al. Self: Structural equational embedded likelihood framework for causality discovery // The Thirty-Second AAAI Conference on Artificial Intelligence(AAAI-18). New Orleans, 2018: 1787
    [46]
    麥桂珍, 彭世國, 洪英漢, 等. 混合加噪聲模型與條件獨立性檢測的因果方向推斷算法. 計算機應用研究, 2019, 36(6):1688

    Mai G Z, Peng S G, Hong Y H, et al. Causation inference based on combining additive noise model and conditional independence. Appl Res Comput, 2019, 36(6): 1688
    [47]
    Fei N N, Yang Y L. Estimating linear causality in the presence of latent variables. Clust Comput, 2017, 20(2): 1025 doi: 10.1007/s10586-017-0824-5
    [48]
    He Y, Jia J, Yu B. Reversible MCMC on Markov equivalence classes of sparse directed ayclic graphs. Ann Statist, 2013, 41(4): 1742
    [49]
    張浩, 郝志峰, 蔡瑞初, 等. 基于互信息的適用于高維數據的因果推斷算法. 計算機應用研究, 2015, 32(2):382 doi: 10.3969/j.issn.1001-3695.2015.02.015

    Zhang H, Hao Z F, Cai R C, et al. High dimensional causality discovering based on mutual information. Appl Res Comput, 2015, 32(2): 382 doi: 10.3969/j.issn.1001-3695.2015.02.015
    [50]
    覃青連, 李嶠, 顏星星, 等. 四種因果圖模型在觀察性研究因果推斷中的比較研究. 中國衛生統計, 2020, 37(4):496

    Qin Q L, Li Q, Yan X X, et al. A comparative study on the four causal diagram models for causal inference in observation study. Chin J Heal Stat, 2020, 37(4): 496
    [51]
    Bareinboim E, Pearl J. Causal inference and the data-fusion problem. PNAS, 2016, 113(27): 7345 doi: 10.1073/pnas.1510507113
    [52]
    Abadie A, Cattaneo M D. Econometric methods for program evaluation. Annu Rev Econ, 2018, 10(1): 465 doi: 10.1146/annurev-economics-080217-053402
    [53]
    Wyss R, Ellis A R, Brookhart M A, et al. The role of prediction modeling in propensity score estimation: An evaluation of logistic regression, bCART, and the covariate-balancing propensity score. Am J Epidemiol, 2014, 180(6): 645 doi: 10.1093/aje/kwu181
    [54]
    Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc B, 2014, 76(1): 243 doi: 10.1111/rssb.12027
    [55]
    Bloniarz A, Liu H Z, Zhang C H, et al. Lasso adjustments of treatment effect in randomized experiments. PNAS, 2016, 113(27): 7383 doi: 10.1073/pnas.1510506113
    [56]
    Choudhury P, Allen R, Endres M. Developing theory using machine learning methods. SSRN Journal, 2018: 3251077
    [57]
    Zivich P N, Breskin A. Machine learning for causal inference: on the use of cross-fit estimators. Epidemiology, 2021, 32(3): 393 doi: 10.1097/EDE.0000000000001332
    [58]
    Wang T, Huang J Q, Zhang H W, et al. Visual commonsense representation learning via causal inference // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, 2020: 1547
    [59]
    陳鵬, 李擎, 張德政, 等. 多模態學習方法綜述. 工程科學學報, 2020, 42(5):557

    Chen P, Li Q, Zhang D Z, et al. A survey of multimodal machine learning. Chin J Eng, 2020, 42(5): 557
    [60]
    Niu Y, Tang K H, Zhang H W, et al. Counterfactual VQA: A cause-effect look at language bias // 2021 IEEE/CVF Computer Vision and Pattern Recognition. Virtual, 2021: 12695
    [61]
    Tang K H, Huang J Q, Zhang H W. Long-tailed classification by keeping the good and removing the bad momentum causal effect // Neural Information Processing Systems. Vancouver, 2020: 12991
    [62]
    Zhang D, Zhang H W, Tang J H, et al. Causal intervention for weakly-supervised semantic segmentation // Neural Information Processing Systems. Vancouver, 2020: 12547
    [63]
    Yue Z Q, Wang T, Zhang H W, et al. Counterfactual zero-shot and open-set visual recognition [J/OL]. arXiv preprint (2021-3-1) [2021-6-11].https://arxiv.org/abs/2103.00887v1
    [64]
    Yang X, Zhang H W, Qi G J, et al. Causal attention for vision-language tasks // Computer Vision and Pattern Recognition. Virtual, 2021: 9842
    [65]
    Bonner S, Vasile F. Causal embeddings for recommendation// Proceedings of the 12th ACM Conference on Recommender Systems. Vancouver, 2018: 104
    [66]
    Xu S Y, Li Y Q, Liu S C, et al. Learning post-hoc causal explanations for recommendation [J/OL]. arXiv preprint (2021-2-23) [2021-6-11].https://arxiv.org/abs/2006.16977
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (2622) PDF downloads(556) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频