<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
WU Rui-dong, LIU Juan-hong, JI Hong-guang, CHE Shu-wu, ZHOU Yu-cheng, ZHANG Guang-tian. Effects of a simulated freezing construction environment on the mass concrete performance[J]. Chinese Journal of Engineering, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002
Citation: WU Rui-dong, LIU Juan-hong, JI Hong-guang, CHE Shu-wu, ZHOU Yu-cheng, ZHANG Guang-tian. Effects of a simulated freezing construction environment on the mass concrete performance[J]. Chinese Journal of Engineering, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002

Effects of a simulated freezing construction environment on the mass concrete performance

doi: 10.13374/j.issn2095-9389.2021.07.01.002
More Information
  • Corresponding author: E-mail: juanhong1966@hotmail.com
  • Received Date: 2021-07-01
    Available Online: 2021-08-25
  • Publish Date: 2022-05-25
  • Exhausted shallow resources have turned mining into deep mining, with the mining depth of most mines under construction being more than 1000 m. With the continuous increase of the mining depth of mineral resources, the thickness and strength grade of the shaft lining concrete increases, resulting in higher hydration heat. The freezing method is usually used in deep well construction, resulting in a high temperature on one side and a low temperature on the other side of the shaft wall concrete. The influence law of this environment on concrete needs to be studied. It is of great theoretical significance for deep well construction and service safety to find out the change law of the shaft wall concrete performance under a freezing construction environment. The temperature difference between ?5/60 ℃ and ?5/70 ℃ was applied to simulate the state of the mass concrete in the freezing method construction environment. The ultrasonic parameters, compressive strength, splitting tensile strength, chloride diffusion coefficient, and bursting liability of concrete under the simulated environment were studied, and the scanning electron microscope of the concrete was analyzed. Results show that the freezing construction environment will cause certain damage to the interior of the concrete, and the damage parallel to the heating direction is greater than that in the vertical direction. The damage of the C50 concrete is greater than that of the C70 concrete, and the temperature gradient will aggravate the internal damage of the concrete. The simulated freezing environment will have adverse effects on the compressive strength, splitting tensile strength, chloride ion permeability, and bursting liability of the concrete. The temperature difference has a positive correlation with the performance reduction rate, which becomes more significant for low-strength concrete. The internal microstructure of the concrete block is uneven due to the simulated freezing environment, the concrete structure at the low-temperature end is loose, and the structure at the high-temperature end is dense, resulting in the decrease of the concrete’s performance.

     

  • loading
  • [1]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [2]
    劉力源, 紀洪廣, 王濤, 等. 高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理. 工程科學學報, 2020, 42(6):715

    Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715
    [3]
    董建華, 吳曉磊, 師利君, 等. 水平凍結施工淺埋隧道對鄰近正交路基的作用分析. 巖石力學與工程學報, 2020, 39(11):2365

    Dong J H, Wu X L, Shi L J, et al. Effect of shallow tunnel construction by horizontal freezing on adjacent orthogonal subgrades. Chin J Rock Mech Eng, 2020, 39(11): 2365
    [4]
    張基偉, 劉書杰, 張松. 富水細砂單向凍結超聲波時頻特性研究. 巖石力學與工程學報, 2020, 39(5):1061

    Zhang J W, Liu S J, Zhang S. Ultrasonic time-frequency characteristics of water-rich fine sand during unidirectional freezing process. Chin J Rock Mech Eng, 2020, 39(5): 1061
    [5]
    郜新軍, 李銘遠, 張景偉, 等. 富水粉質黏土中地鐵聯絡通道凍結法試驗研究. 巖石力學與工程學報, 2021, 40(6):1267

    Gao X J, Li M Y, Zhang J W, et al. Field research on artificial freezing of subway cross passages in water-rich silty clay layers. Chin J Rock Mech Eng, 2021, 40(6): 1267
    [6]
    Ma H Y, Zhu C Q, Zhao P T, et al. Freezing method for rock cross-cut coal uncovering: Aging characteristic of effective freezing distance on injecting liquid nitrogen into coal seam. Adv Civ Eng, 2021: 8870768
    [7]
    張松, 岳祖潤, 孫鐵成, 等. 突發定滲流作用下凍土溫度場演化規律及判別方法. 煤炭學報, 2020, 45(12):4017

    Zhang S, Yue Z R, Sun T C, et al. Evolution of ground freezing temperature field under sudden seepage with stable flow rate and discriminate method of seepage. J China Coal Soc, 2020, 45(12): 4017
    [8]
    Inada Y, Yokota K. Some studies of low temperature rock strength. Int J Rock Mech Min Sci Geomech Abstr, 1984, 21(3): 145 doi: 10.1016/0148-9062(84)91532-8
    [9]
    單仁亮, 劉偉俊, 柴高竣, 等. 滲流作用下局部水平凍結體擴展規律試驗研究. 煤炭學報, 2019, 44(增刊2): 526

    Shan R L, Liu W J, Chai G J, et al. Experimental study on the expansion law of local horizontal frozen body under seepage. J China Coal Soc, 2019, 44(Suppl 2): 526
    [10]
    宋勇軍, 張磊濤, 任建喜, 等. 低溫環境下紅砂巖蠕變特性及其模型. 煤炭學報, 2020, 45(8):2795

    Song Y J, Zhang L T, Ren J X, et al. Creep property and model of red sandstone under low temperature environment. J China Coal Soc, 2020, 45(8): 2795
    [11]
    姚直書, 趙麗霞, 程樺, 等. 深厚表土層凍結井筒高強鋼筋混凝土內壁設計優化與實測分析. 煤炭學報, 2019, 44(7):2125

    Yao Z S, Zhao L X, Cheng H, et al. Optimization design and measurement analysis on inter lining of high strength reinforced concrete frozen shaft lining with deep topsoil. J China Coal Soc, 2019, 44(7): 2125
    [12]
    焦華喆, 孫冠東, 陳新明, 等. 深厚沖積層多圈孔凍結壁溫度場發展研究. 煤炭學報, 2018, 43(增刊2): 443

    Jiao H Z, Sun G D, Chen X M, et al. Development of temperature field of multi circle freezing wall in deep alluvium. J China Coal Soc, 2018, 43(Suppl 2): 443
    [13]
    管華棟, 周曉敏, 徐衍, 等. 凍結立井井壁早期溫度應力計算研究. 金屬礦山, 2018(5):44

    Guan H D, Zhou X M, Xu Y, et al. Calculation of the early thermal stress in freezing vertical shaft lining. Met Mine, 2018(5): 44
    [14]
    Zhou Y Q, Liu W W. Application of granulated copper slag in massive concrete under saline soil environment. Constr Build Mater, 2021, 266: 121165 doi: 10.1016/j.conbuildmat.2020.121165
    [15]
    Azenha M, Kanavaris F, Schlicke D, et al. Recommendations of RILEM TC 287-CCS: Thermo-chemo-mechanical modelling of massive concrete structures towards cracking risk assessment. Mater Struct, 2021, 54(4): 1
    [16]
    Feng C Q, Zhao C, Yu X M, et al. A mathematical model of the expansion evolution of magnesium oxide in mass concrete based on hydration characteristics. Materials, 2021, 14(12): 3162 doi: 10.3390/ma14123162
    [17]
    Bakour A, Ftima M B. Experimental investigations on the asymptotic fracture energy for large mass concrete specimens using wedge splitting test. Constr Build Mater, 2021, 279: 122405 doi: 10.1016/j.conbuildmat.2021.122405
    [18]
    Zhou Y C, Liu J H, Huang S, et al. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Constr Build Mater, 2020, 230: 116909 doi: 10.1016/j.conbuildmat.2019.116909
    [19]
    劉娟紅, 趙力, 紀洪廣. 初始損傷對混凝土硫酸鹽腐蝕劣化性能的影響. 工程科學學報, 2017, 39(8):1278

    Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278
    [20]
    Yang L, Yao Z S, Xue W P, et al. Preparation, performance test and microanalysis of hybrid fibers and microexpansive high-performance shaft lining concrete. Constr Build Mater, 2019, 223: 431 doi: 10.1016/j.conbuildmat.2019.06.230
    [21]
    劉娟紅, 趙力, 宋少民, 等. 混凝土硫酸鹽腐蝕損傷的聲波與聲發射變化特征及機理. 工程科學學報, 2016, 38(8):1075

    Liu J H, Zhao L, Song S M, et al. Ultrasonic velocity and acoustic emission properties of concrete eroded by sulfate and its damage mechanism. Chin J Eng, 2016, 38(8): 1075
    [22]
    劉娟紅, 王祖琦, 紀洪廣. 早齡期凍結土壓力與負溫耦合作用的井壁混凝土性能. 北京科技大學學報, 2014, 36(8):1000

    Liu J H, Wang Z Q, Ji H G. Performance of shaft lining concrete under the coupling effect of early-age frozen soil pressure and negative temperature. J Univ Sci Technol Beijing, 2014, 36(8): 1000
    [23]
    Zhou Y C, Liu J H, Yang H T, et al. Failure patterns and energy analysis of shaft lining concrete in simulated deep underground environments. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(2): 418 doi: 10.1007/s11595-020-2273-x
    [24]
    劉娟紅, 周昱程, 楊海濤, 等. 沖擊荷載作用下的井壁混凝土能量與損傷特性. 煤炭學報, 2019, 44(10):2983

    Liu J H, Zhou Y C, Yang H T, et al. Energy and damage characteristics of shaft lining concrete subjected to impact. J China Coal Soc, 2019, 44(10): 2983
    [25]
    劉娟紅, 周昱程, 紀洪廣. 單軸加卸載作用下井壁混凝土能量演化機理. 煤炭學報, 2018, 43(12):3364

    Liu J H, Zhou Y C, Ji H G. Energy evolution mechanism of shaft wall concrete under uniaxial loading and unloading compression. J China Coal Soc, 2018, 43(12): 3364
    [26]
    周昱程, 劉娟紅, 紀洪廣, 等. 溫度?復合鹽耦合條件下纖維混凝土井壁沖擊傾向性試驗研究. 材料導報, 2019, 33(16):2671 doi: 10.11896/cldb.18070169

    Zhou Y C, Liu J H, Ji H G, et al. Study on bursting liability of fiber reinforced shaft lining concrete based on temperature and compound salt. Mater Rep, 2019, 33(16): 2671 doi: 10.11896/cldb.18070169
    [27]
    劉娟紅, 吳瑞東, 周昱程. 基于深地復雜應力條件下混凝土沖擊傾向性試驗. 煤炭學報, 2018, 43(1):79

    Liu J H, Wu R D, Zhou Y C. Experiment of bursting liability of deep underground concrete under complex stress conditions. J China Coal Soc, 2018, 43(1): 79
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article views (427) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频