<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
JIN Liu, YANG Hong-shen, ZHANG Ren-bo, DU Xiu-li. Corrosion effects of longitudinal reinforcement on shear behavior of concrete beams without web reinforcement[J]. Chinese Journal of Engineering, 2023, 45(1): 117-127. doi: 10.13374/j.issn2095-9389.2021.06.29.008
Citation: JIN Liu, YANG Hong-shen, ZHANG Ren-bo, DU Xiu-li. Corrosion effects of longitudinal reinforcement on shear behavior of concrete beams without web reinforcement[J]. Chinese Journal of Engineering, 2023, 45(1): 117-127. doi: 10.13374/j.issn2095-9389.2021.06.29.008

Corrosion effects of longitudinal reinforcement on shear behavior of concrete beams without web reinforcement

doi: 10.13374/j.issn2095-9389.2021.06.29.008
More Information
  • Corresponding author: E-mail: zhangrenbo99@126.com
  • Received Date: 2021-06-29
    Available Online: 2021-09-29
  • Publish Date: 2023-01-01
  • Rebar corrosion is the principal factor affecting the service performance of reinforced concrete (RC) structures. Corrosion reduces the effective area of rebars as well as performance, and weakens the pin bolt effect of rebar on concrete. In addition, when the rebar is severely rusted, the concrete cover breaks, and the bond behavior between reinforcement and concrete deteriorates, affecting the mechanical properties of RC structures. In this study, a three-dimensional numerical model for shear analysis incorporating the nonuniform corrosion of reinforcement was established using an RC beam as the research object. The effects of corrosion on the mechanical behavior of the RC beam were explored via a multistage analysis method (namely, corrosion-induced expansion stage and structural deterioration stage). To model and simulate the expansion of the corrosion products, nonuniform radial displacement was applied to the concrete surrounding the rebar. The cracking process and the damage patterns of concrete resulting from corrosion were obtained. Then, taking the corrosion state as the initial condition, the static load was applied to analyze the mechanical behavior of the RC beam. After verifying the rationality of the multistage numerical model, the effect of the corrosion of tensile reinforcement and the shear-span ratio on the shear behavior of concrete beams without web reinforcement was analyzed. The modeling analysis results show that the corrosion of longitudinal reinforcement causes obvious longitudinal corrosion fractures in the concrete beam. Moreover, with the development of corrosion, the cracking area of the protective layer increases, reducing the shear capacity of the beam significantly. Furthermore, the shear-span ratio has a larger effect on the shear capacity of noncorroded beams than that of corroded beams. Finally, based on the simulation results, the calculation formulas of shear capacity in relevant design codes were discussed, and a methodology for predicting the shear capacity of RC beams without web reinforcement was proposed.

     

  • loading
  • [1]
    Zhang K J, Xiao J Z, Zhao Y X, et al. Analytical model for critical corrosion level of reinforcements to cause the cracking of concrete cover. Constr Build Mater, 2019, 223: 185 doi: 10.1016/j.conbuildmat.2019.06.210
    [2]
    Biswas R K, Iwanami M, Chijiwa N, et al. Effect of non-uniform rebar corrosion on structural performance of RC structures: A numerical and experimental investigation. Constr Build Mater, 2020, 230: 116908 doi: 10.1016/j.conbuildmat.2019.116908
    [3]
    Li C Q, Melchers R E. Time-dependent risk assessment of structural deterioration caused by reinforcement corrosion. ACI Struct J, 2005, 102(5): 754
    [4]
    Alaskar A, Alqarni A S, Alfalah G, et al. Performance evaluation of reinforced concrete beams with corroded web reinforcement: Experimental and theoretical study. J Build Eng, 2021, 35: 102038 doi: 10.1016/j.jobe.2020.102038
    [5]
    Suffern C, El-Sayed A, Soudki K. Shear strength of disturbed regions with corroded stirrups in reinforced concrete beams. Can J Civ Eng, 2010, 37(8): 1045 doi: 10.1139/L10-031
    [6]
    黃天立, 趙志彥, 宋力, 等. 縱筋銹蝕對鋼筋混凝土梁抗剪性能影響的試驗研究. 中南大學學報(自然科學版), 2019, 50(8):1901

    Huang T L, Zhao Z Y, Song L, et al. Experimental investigation on shear performance of RC beams due to longitudinal reinforcement corrosion. J Central South Univ Sci Technol, 2019, 50(8): 1901
    [7]
    戴明江, 楊鷗, 肖巖. 縱筋銹蝕對鋼筋混凝土梁抗剪性能影響. 工業建筑, 2016, 46(11):74

    Dai M J, Yang O, Xiao Y. Influence of longitudinal bar corrosion on shear behavior of RC beams. Ind Constr, 2016, 46(11): 74
    [8]
    Xue X, Seki H. Influence of longitudinal bar corrosion on shear behavior of RC beams. J Adv Concr Technol, 2010, 8(2): 145 doi: 10.3151/jact.8.145
    [9]
    徐善華, 牛荻濤. 銹蝕鋼筋混凝土簡支梁斜截面抗剪性能研究. 建筑結構學報, 2004, 25(5):98 doi: 10.3321/j.issn:1000-6869.2004.05.016

    Xu S H, Niu D T. The shear behavior of corroded simply supported reinforced concrete beam. J Build Struct, 2004, 25(5): 98 doi: 10.3321/j.issn:1000-6869.2004.05.016
    [10]
    Khan I, Fran?ois R, Castel A. Experimental and analytical study of corroded shear-critical reinforced concrete beams. Mater Struct, 2014, 47(9): 1467 doi: 10.1617/s11527-013-0129-y
    [11]
    El-Sayed A K. Shear capacity assessment of reinforced concrete beams with corroded stirrups. Constr Build Mater, 2017, 134: 176 doi: 10.1016/j.conbuildmat.2016.12.118
    [12]
    Azam R, Soudki K. Structural behavior of shear-critical RC slender beams with corroded properly anchored longitudinal steel reinforcement. J Struct Eng, 2013, 139(12): 04013011 doi: 10.1061/(ASCE)ST.1943-541X.0000799
    [13]
    Azam R, Soudki K. Structural performance of shear-critical RC deep beams with corroded longitudinal steel reinforcement. Cem Concr Compos, 2012, 34(8): 946 doi: 10.1016/j.cemconcomp.2012.05.003
    [14]
    余璠璟. 銹蝕鋼筋混凝土梁斜截面性能試驗研究和分析[學位論文]. 南京: 河海大學, 2005

    Yu F J. Experimental Study and Analysis on the Diagonal Shear Property of Corroded Reinforced Concrete Beam [Dissertation]. Nanjing: Hohai University, 2005
    [15]
    Cui Z, Alipour A. Concrete cover cracking and service life prediction of reinforced concrete structures in corrosive environments. Constr Build Mater, 2018, 159: 652 doi: 10.1016/j.conbuildmat.2017.03.224
    [16]
    Jin L, Liu M J, Zhang R B, et al. Cracking of cover concrete due to non-uniform corrosion of corner rebar: A 3D meso-scale study. Constr Build Mater, 2020, 245: 118449 doi: 10.1016/j.conbuildmat.2020.118449
    [17]
    Lim S, Akiyama M, Frangopol D M. Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling. Eng Struct, 2016, 127: 189 doi: 10.1016/j.engstruct.2016.08.040
    [18]
    Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beams: Modeling guidelines. J Struct Eng, 2004, 130(8): 1214 doi: 10.1061/(ASCE)0733-9445(2004)130:8(1214)
    [19]
    Chen E, Leung C K Y. Finite element modeling of concrete cover cracking due to non-uniform steel corrosion. Eng Fract Mech, 2015, 134: 61 doi: 10.1016/j.engfracmech.2014.12.011
    [20]
    Han S J, Lee D, Yi S T, et al. Experimental shear tests of reinforced concrete beams with corroded longitudinal reinforcement. Struct Concr, 2020, 21(5): 1763 doi: 10.1002/suco.201900248
    [21]
    Jin L, Lan Y C, Zhang R B, et al. Impact performances of RC beams at/after elevated temperature: A meso-scale study. Eng Fail Anal, 2019, 105: 196 doi: 10.1016/j.engfailanal.2019.07.002
    [22]
    伍雪南, 徐為, 孫勇, 等. 考慮粘結滑移的銹蝕鋼筋混凝土梁數值模擬研究. 工業建筑, 2012, 42(增刊1): 126

    Wu X N, Xu W, Sun Y, et al. Experimental study on property of RC concrete beams corroded by Nacl. Ind Constr, 2012, 42(Suppl 1): 126
    [23]
    Jin L, Fan L L, Li P, et al. Size effect of axial-loaded concrete-filled steel tubular columns with different confinement coefficients. Eng Struct, 2019, 198: 109503 doi: 10.1016/j.engstruct.2019.109503
    [24]
    中華人民共和國住房和城鄉建設部. GB 50010―2010混凝土結構設計規范. 北京: 中國建筑工業出版社, 2010

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50010—2010 Code for Design of Concrete Structures. Beijing: China Architecture & Building Press, 2010
    [25]
    Yuan Y S, Ji Y S. Modeling corroded section configuration of steel bar in concrete structure. Constr Build Mater, 2009, 23(6): 2461 doi: 10.1016/j.conbuildmat.2008.09.026
    [26]
    Zhao Y X, Jin W L. Modeling the amount of steel corrosion at the cracking of concrete cover. Adv Struct Eng, 2006, 9(5): 687 doi: 10.1260/136943306778827556
    [27]
    薛圣廣. 鋼筋非均勻銹蝕引起的混凝土保護層開裂有限元分析[學位論文]. 西安: 西安建筑科技大學, 2008

    Xue S G. FEM Analysis on the Crack Process of Concrete Cover Induced by Rebar Non-Uniform Corrosion [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2008
    [28]
    Lu C H, Jin W L, Liu R G. Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures. Corros Sci, 2011, 53(4): 1337 doi: 10.1016/j.corsci.2010.12.026
    [29]
    Liu Y P, Weyers R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. ACI Mater J, 1998, 95(6): 675
    [30]
    Sun X Y, Kong H T, Wang H L, et al. Evaluation of corrosion characteristics and corrosion effects on the mechanical properties of reinforcing steel bars based on three-dimensional scanning. Corros Sci, 2018, 142: 284 doi: 10.1016/j.corsci.2018.07.030
    [31]
    邢國華, 牛荻濤. 銹蝕鋼筋混凝土梁的受彎分析模型. 中南大學學報(自然科學版), 2014, 45(1):193

    Xing G H, Niu D T. Analytical model of flexural behavior of corroded reinforced concrete beams. J Central South Univ Sci Technol, 2014, 45(1): 193
    [32]
    Lin H W, Zhao Y X, Feng P, et al. State-of-the-art review on the bond properties of corroded reinforcing steel bar. Constr Build Mater, 2019, 213: 216 doi: 10.1016/j.conbuildmat.2019.04.077
    [33]
    Bhargava K, Ghosh A K, Mori Y, et al. Suggested empirical models for corrosion-induced bond degradation in reinforced concrete. J Struct Eng, 2008, 134(2): 221 doi: 10.1061/(ASCE)0733-9445(2008)134:2(221)
    [34]
    Canadian Standards Association. CSA A23.3-19 Design of Concrete Structures. Toronto: Canadian Standards Association, 2019
    [35]
    British Standards Institution. BS EN 1992-1-1: 2004 Eurocode 2: Design of Concrete Structures. London: British Standards Institution, 2004
    [36]
    American Concrete Institute. ACI 318-19 Building Code Requirements for Structural Concrete. Farmington Hills: American Concrete Institute, 2019
    [37]
    祝建軍. 縱筋銹蝕對無腹筋梁斜截面受剪承載力的影響[學位論文]. 南昌: 南昌大學, 2007

    Zhu J J. Effect of Corroded Longitutal Reinforcements on Shear Capacity of Simple Supported Concrete Beam without Stirrups [Dissertation]. Nanchang: Nanchang University, 2007
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article views (336) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频