Citation: | WANG Peng, YANG Shao-pu, LIU Yong-qiang, ZHAO Yi-wei, WANG Cui-yan. Modified Bouc?Wen model based on a fractional derivative for describing the hysteretic characteristics of magnetorheological elastomers[J]. Chinese Journal of Engineering, 2022, 44(3): 389-401. doi: 10.13374/j.issn2095-9389.2021.06.23.002 |
[1] |
Dong X F, Ma N, Qi M, et al. The pressure-dependent MR effect of magnetorheological elastomers. Smart Mater Struct, 2012, 21(7): 075014 doi: 10.1088/0964-1726/21/7/075014
|
[2] |
Ahamed R, Choi S B, Ferdaus M M. A state of art on magneto-rheological materials and their potential applications. J Intell Mater Syst Struct, 2018, 29(10): 2051 doi: 10.1177/1045389X18754350
|
[3] |
An J S, Kwon S H, Choi H J, et al. Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance. Compos Struct, 2017, 160: 1020 doi: 10.1016/j.compstruct.2016.10.128
|
[4] |
Tong Y, Dong X F, Qi M. Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers. Soft Matter, 2018, 14(18): 3504 doi: 10.1039/C8SM00359A
|
[5] |
Jolly M R, Carlson J D, Mu?oz B C. A model of the behaviour of magnetorheological materials. Smart Mater Struct, 1996, 5(5): 607 doi: 10.1088/0964-1726/5/5/009
|
[6] |
Davis L C. Model of magnetorheological elastomers. J Appl Phys, 1999, 85(6): 3348 doi: 10.1063/1.369682
|
[7] |
Chen L, Gong X L, Li W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater Struct, 2007, 16(6): 2645 doi: 10.1088/0964-1726/16/6/069
|
[8] |
Zhang X Z, Peng S L, Wen W J, et al. Analysis and fabrication of patterned magnetorheological elastomers. Smart Mater Struct, 2008, 17(4): 045001 doi: 10.1088/0964-1726/17/4/045001
|
[9] |
Wang B C, Kari L. A visco-elastic-plastic constitutive model of isotropic magneto-sensitive rubber with amplitude, frequency and magnetic dependency. Int J Plast, 2020, 132: 102756 doi: 10.1016/j.ijplas.2020.102756
|
[10] |
Li W H, Zhou Y, Tian T F. Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta, 2010, 49(7): 733 doi: 10.1007/s00397-010-0446-9
|
[11] |
Kari L, Blom P. Magneto-sensitive rubber in a noise reduction context: Exploring the potential. Plast Rubber Compos, 2005, 34(8): 365 doi: 10.1179/174328905X59692
|
[12] |
Chen L, Jerrams S. A rheological model of the dynamic behavior of magnetorheological elastomers. J Appl Phys, 2011, 110(1): 013513 doi: 10.1063/1.3603052
|
[13] |
Blom P, Kari L. A nonlinear constitutive audio frequency magneto-sensitive rubber model including amplitude, frequency and magnetic field dependence. J Sound Vib, 2011, 330(5): 947 doi: 10.1016/j.jsv.2010.09.010
|
[14] |
Xu Z D, Xu C, Hu J. Equivalent fractional Kelvin model and experimental study on viscoelastic damper. J Vib Control, 2015, 21(13): 2536 doi: 10.1177/1077546313513604
|
[15] |
Xu Z D, Shen Y P, Guo Y Q. Semi-active control of structures incorporated with magnetorheological dampers using neural networks. Smart Mater Struct, 2003, 12(1): 80 doi: 10.1088/0964-1726/12/1/309
|
[16] |
Behrooz M, Wang X J, Gordaninejad F. Modeling of a new semi-active/passive magnetorheological elastomer isolator. Smart Mater Struct, 2014, 23(4): 045013 doi: 10.1088/0964-1726/23/4/045013
|
[17] |
Xu Z D, Suo S, Zhu J T, et al. Performance tests and modeling on high damping magnetorheological elastomers based on bromobutyl rubber. J Intell Mater Syst Struct, 2018, 29(6): 1025 doi: 10.1177/1045389X17730909
|
[18] |
Wang B C, Kari L. A nonlinear constitutive model by spring, fractional derivative and modified bounding surface model to represent the amplitude, frequency and the magnetic dependency for Magneto-sensitive rubber. J Sound Vib, 2019, 438: 344 doi: 10.1016/j.jsv.2018.09.028
|
[19] |
孔凡, 侯召旭, 徐軍, 等. 基于多諧波平衡法的滯回分數階系統穩態動力響應. 振動工程學報, 2021, 34(3):552
Kong F, Hou Z X, Xu J, et al. Steady-state response determination of a hysteretic system endowed with fractional elements via a multi-harmonic balance method. J Vib Eng, 2021, 34(3): 552
|
[20] |
Wang B C, Kari L. Modeling and vibration control of a smart vibration isolation system based on magneto-sensitive rubber. Smart Mater Struct, 2019, 28(6): 065026 doi: 10.1088/1361-665X/ab1ab4
|
[21] |
Dominguez A, Sedaghati R, Stiharu I. Modelling the hysteresis phenomenon of magnetorheological dampers. Smart Mater Struct, 2004, 13(6): 1351 doi: 10.1088/0964-1726/13/6/008
|
[22] |
Yang J, Du H P, Li W H, et al. Experimental study and modeling of a novel magnetorheological elastomer isolator. Smart Mater Struct, 2013, 22(11): 117001 doi: 10.1088/0964-1726/22/11/117001
|
[23] |
趙義偉, 劉永強, 楊紹普, 等. 一種描述減振器滯回特性的Bouc?Wen改進模型. 工程科學學報, 2020, 42(10):10
Zhao Y W, Liu Y Q, Yang S P, et al. An improved Bouc-Wen model for describing hysteretic characteristics of shock absorbers. Chin J Eng, 2020, 42(10): 10
|
[24] |
徐趙東, 李愛群, 程文瀼, 等. 磁流變阻尼器帶質量元素的溫度唯象模型. 工程力學, 2005, 22(2):144 doi: 10.3969/j.issn.1000-4750.2005.02.026
Xu Z D, Li A Q, Cheng W R, et al. A temperature phenomenological model with mass element of magnetorheological damper. Eng Mech, 2005, 22(2): 144 doi: 10.3969/j.issn.1000-4750.2005.02.026
|
[25] |
Wang Q, Dong X F, Li L Y, et al. A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies. Smart Mater Struct, 2017, 26(6): 065010 doi: 10.1088/1361-665X/aa66e3
|
[26] |
常宇健, 田沃沃, 陳恩利, 等. 基于分數階微分的金屬橡膠遲滯非線性動力學模型. 振動與沖擊, 2020, 39(14):233
Chang Y J, Tian W W, Chen E L, et al. Dynamic model for the nonlinear hysteresis of metal rubber based on the fractional-order derivative. J Vib Shock, 2020, 39(14): 233
|
[27] |
You H, Shen Y J, Xing H J, et al. Optimal control and parameters design for the fractional-order vehicle suspension system. J Low Freq Noise Vib Active Control, 2018, 37(3): 456 doi: 10.1177/0263092317717166
|
[28] |
Xue D Y, Zhao C N, Chen Y Q. A modified approximation method of fractional order system // 2006 International Conference on Mechatronics and Automation. Luoyang, 2006: 1043
|
[29] |
Liu Y Y, Dai J J, Zhao S S, et al. Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm. Optik, 2020, 219: 164978 doi: 10.1016/j.ijleo.2020.164978
|
[30] |
劉永強, 楊紹普, 廖英英. 一種磁流變阻尼器模型參數識別新方法. 機械工程學報, 2018, 54(6):62 doi: 10.3901/JME.2018.06.062
Liu Y Q, Yang S P, Liao Y Y. A new method of parameters identification for magnetorheological damper model. J Mech Eng, 2018, 54(6): 62 doi: 10.3901/JME.2018.06.062
|