<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZHENG Zi-xiang, WANG En-hui, HOU Xin-mei, YANG Tao. Stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene)[J]. Chinese Journal of Engineering, 2022, 44(11): 1881-1896. doi: 10.13374/j.issn2095-9389.2021.06.16.008
Citation: ZHENG Zi-xiang, WANG En-hui, HOU Xin-mei, YANG Tao. Stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene)[J]. Chinese Journal of Engineering, 2022, 44(11): 1881-1896. doi: 10.13374/j.issn2095-9389.2021.06.16.008

Stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene)

doi: 10.13374/j.issn2095-9389.2021.06.16.008
More Information
  • Corresponding author: E-mail: yangtaoustb@ustb.edu.cn
  • Received Date: 2021-06-16
    Available Online: 2021-09-08
  • Publish Date: 2022-11-01
  • In recent years, a new family of two-dimensional (2D) transition metal carbides and/or carbonitrides, labeled MXenes, has attracted immense attention from researchers. Due to unusual hydrophilicity, electrical conductivity, flexibility, and pseudocapacitance, MXenes have great potential application in energy storage, water desalination, catalysis, electromagnetic interference shielding, transparent conductive films, and so on. However, MXenes exhibit poor stability because of their structural defects, active transition metals, and termination groups. These greatly destroy the sheet structure and decrease their conductivity, thereby restricting their application fields. In this review, the structure and synthesis methods of MXenes are briefly introduced. Then, we focus on current research studies regarding the stability of MXenes. The mechanism of oxidation is also discussed. Ti vacancies and the edges are the preferential oxidation sites in MXene sheets. Based on this, the methods to improve the MXene stability, including controlling the storage environment, improving the synthesis method, annealing in an atmosphere, modification based on the surface electric state, and doping impurities, are further discussed. First, the optimal requirements for MXenes storage are low temperature, desiccation, and oxygen isolation. Second, soft etching methods must be applied to synthesize MXenes to reduce the defect density of their sheet surface. Then, annealing MXenes in an atmosphere can enable the tailoring of the surface structure and functional groups for enhanced MXene stability. Lastly, more methods have been applied to improve the stability of MXenes based on their surface electric state. Since the MXene sheet surface is electronegative, their oxidation can be impeded by loading cations into the sheets. Similarly, since the edge of these sheets is electropositive, polyanions can be absorbed onto the edge to protect the MXene sheets. Moreover, compositing metal oxides, organic macromolecules, and nanocarbon on their surface can also improve the stability of MXenes. Finally, doping with impurities can also improve the band energy of MXenes. Meanwhile, our idea to improve the stability of MXenes is also briefly introduced.

     

  • loading
  • [1]
    Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9-10): 351 doi: 10.1016/j.ssc.2008.02.024
    [2]
    Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490: 192 doi: 10.1038/nature11458
    [3]
    Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37): 4248 doi: 10.1002/adma.201102306
    [4]
    Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098 doi: 10.1038/natrevmats.2016.98
    [5]
    Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano, 2013, 6(2): 1322
    [6]
    Ghidiu M, Naguib M, Shi C, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun, 2014, 50(67): 9517 doi: 10.1039/C4CC03366C
    [7]
    Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015, 9(10): 9507 doi: 10.1021/acsnano.5b03591
    [8]
    Zhou J, Gao S H, Guo Z L, et al. Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceram Int, 2017, 43(14): 11450 doi: 10.1016/j.ceramint.2017.06.016
    [9]
    Sun Z M, Music D, Ahuja R, et al. Bonding and classification of nanolayered ternary carbides. Phys Rev B Condens Matter Mater Phys, 2004, 70(9): 092102 doi: 10.1103/PhysRevB.70.092102
    [10]
    Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385 doi: 10.1039/C6NR02253G
    [11]
    Dillon A D, Ghidiu M J, Krick A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater, 2016, 26(23): 4162 doi: 10.1002/adfm.201600357
    [12]
    Sang X H, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 2016, 10(10): 9193 doi: 10.1021/acsnano.6b05240
    [13]
    Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502 doi: 10.1126/science.1241488
    [14]
    Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516: 78 doi: 10.1038/nature13970
    [15]
    武偉, 王恩會, 楊濤, 等. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能. 工程科學學報, 2021, 43(6):808

    Wu W, Wang E H, Yang T, et al. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films. Chin J Eng, 2021, 43(6): 808
    [16]
    Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie Int Ed, 2015, 54(13): 3907 doi: 10.1002/anie.201410174
    [17]
    Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett, 2015, 6(20): 4026 doi: 10.1021/acs.jpclett.5b01895
    [18]
    Seh Z W, Fredrickson K D, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett, 2016, 1(3): 589 doi: 10.1021/acsenergylett.6b00247
    [19]
    Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137 doi: 10.1126/science.aag2421
    [20]
    Halim J, Lukatskaya M R, Cook K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater, 2014, 26(7): 2374 doi: 10.1021/cm500641a
    [21]
    Hantanasirisakul K, Zhao M Q, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater, 2016, 2(6): 1600050 doi: 10.1002/aelm.201600050
    [22]
    Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater, 2017, 29(18): 7633 doi: 10.1021/acs.chemmater.7b02847
    [23]
    Zhang C F, McKeon L, Kremer M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun, 2019, 10: 1795 doi: 10.1038/s41467-019-09398-1
    [24]
    Sun N, Zhu Q Z, Anasori B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater, 2019, 29(51): 1906282 doi: 10.1002/adfm.201906282
    [25]
    Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater, 2015, 27(23): 3501 doi: 10.1002/adma.201500604
    [26]
    Mashtalir O, Naguib M, Mochalin V N, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun, 2013, 4: 1716 doi: 10.1038/ncomms2664
    [27]
    Lipatov A, Alhabeb M, Lukatskaya M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater, 2016, 2(12): 1600255 doi: 10.1002/aelm.201600255
    [28]
    Sun W, Shah S A, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A, 2017, 5(41): 21663 doi: 10.1039/C7TA05574A
    [29]
    Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc, 2019, 141(11): 4730 doi: 10.1021/jacs.9b00574
    [30]
    Xia F J, Lao J C, Yu R H, et al. Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale, 2019, 11(48): 23330 doi: 10.1039/C9NR07236E
    [31]
    Naguib M, Mashtalir O, Lukatskaya M R, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun, 2014, 50(56): 7420 doi: 10.1039/C4CC01646G
    [32]
    Ghassemi H, Harlow W, Mashtalir O, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem A, 2014, 2(35): 14339 doi: 10.1039/C4TA02583K
    [33]
    Narayanasamy M, Kirubasankar B, Shi M J, et al. Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem Commun, 2020, 56(47): 6412 doi: 10.1039/D0CC01802C
    [34]
    Lotfi R, Naguib M, Yilmaz D E, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A, 2018, 6(26): 12733 doi: 10.1039/C8TA01468J
    [35]
    Zhao X F, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1(2): 513 doi: 10.1016/j.matt.2019.05.020
    [36]
    Huang S H, Mochalin V N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg Chem, 2019, 58(3): 1958 doi: 10.1021/acs.inorgchem.8b02890
    [37]
    Ahmed B, Anjum D H, Hedhili M N, et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016, 8(14): 7580 doi: 10.1039/C6NR00002A
    [38]
    Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387 doi: 10.1039/C9NR00084D
    [39]
    Tang J, Mathis T S, Kurra N, et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew Chem Int Ed, 2019, 58(49): 17849 doi: 10.1002/anie.201911604
    [40]
    Habib T, Zhao X, Shah S A, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Mater Appl, 2019, 3: 8 doi: 10.1038/s41699-019-0089-3
    [41]
    Peng J H, Chen X Z, Ong W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem, 2019, 5(1): 18 doi: 10.1016/j.chempr.2018.08.037
    [42]
    Mishra A, Srivastava P, Carreras A, et al. Atomistic origin of phase stability in oxygen-functionalized MXene: A comparative study. J Phys Chem C, 2017, 121(34): 18947 doi: 10.1021/acs.jpcc.7b06162
    [43]
    Zhang C J, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater, 2017, 29(11): 4848 doi: 10.1021/acs.chemmater.7b00745
    [44]
    Feng A H, Yu Y, Jiang F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram Int, 2017, 43(8): 6322 doi: 10.1016/j.ceramint.2017.02.039
    [45]
    Mathis T S, Maleski K, Goad A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 2021, 15(4): 6420 doi: 10.1021/acsnano.0c08357
    [46]
    Lee Y, Kim S J, Kim Y J, et al. Oxidation-resistant titanium carbide MXene films. J Mater Chem A, 2020, 8(2): 573 doi: 10.1039/C9TA07036B
    [47]
    Zhao X F, Holta D E, Tan Z Y, et al. Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl Nano Mater, 2020, 3(11): 10578 doi: 10.1021/acsanm.0c02473
    [48]
    Lao J C, Lv R J, Gao J, et al. Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS Nano, 2018, 12(12): 12464 doi: 10.1021/acsnano.8b06708
    [49]
    Natu V, Hart J L, Sokol M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem Int Ed, 2019, 58(36): 12655 doi: 10.1002/anie.201906138
    [50]
    Lee G S, Yun T, Kim H, et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722 doi: 10.1021/acsnano.0c04411
    [51]
    Ding Y, Xiang S L, Zhi W Q, et al. Realizing ultra-stable Ti3C2-MXene in aqueous solution via surface grafting with ionomers. Soft Matter, 2021, 17(18): 4703 doi: 10.1039/D1SM00508A
    [52]
    Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater, 2017, 29(24): 1607017 doi: 10.1002/adma.201607017
    [53]
    Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249 doi: 10.1016/j.nanoen.2017.02.043
    [54]
    Yang T, Li Q, Chang X W, et al. Preparation of TiOxNy/TiN composites for photocatalytic hydrogen evolution under visible light. Phys Chem Chem Phys, 2015, 17(43): 28782 doi: 10.1039/C5CP04768D
    [55]
    Hou X M, Li Q, Zhang L Q, et al. Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafast-charging/discharging and excellent stable supercapacitors. J Power Sources, 2018, 396: 319 doi: 10.1016/j.jpowsour.2018.06.033
    [56]
    Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater, 2018, 8(13): 1702485 doi: 10.1002/aenm.201702485
    [57]
    Jiang G Y, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J, 2019, 373: 1309 doi: 10.1016/j.cej.2019.05.119
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(18)

    Article views (2892) PDF downloads(349) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频