Citation: | ZHENG Zi-xiang, WANG En-hui, HOU Xin-mei, YANG Tao. Stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene)[J]. Chinese Journal of Engineering, 2022, 44(11): 1881-1896. doi: 10.13374/j.issn2095-9389.2021.06.16.008 |
[1] |
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9-10): 351 doi: 10.1016/j.ssc.2008.02.024
|
[2] |
Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490: 192 doi: 10.1038/nature11458
|
[3] |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37): 4248 doi: 10.1002/adma.201102306
|
[4] |
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098 doi: 10.1038/natrevmats.2016.98
|
[5] |
Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano, 2013, 6(2): 1322
|
[6] |
Ghidiu M, Naguib M, Shi C, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun, 2014, 50(67): 9517 doi: 10.1039/C4CC03366C
|
[7] |
Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015, 9(10): 9507 doi: 10.1021/acsnano.5b03591
|
[8] |
Zhou J, Gao S H, Guo Z L, et al. Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceram Int, 2017, 43(14): 11450 doi: 10.1016/j.ceramint.2017.06.016
|
[9] |
Sun Z M, Music D, Ahuja R, et al. Bonding and classification of nanolayered ternary carbides. Phys Rev B Condens Matter Mater Phys, 2004, 70(9): 092102 doi: 10.1103/PhysRevB.70.092102
|
[10] |
Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385 doi: 10.1039/C6NR02253G
|
[11] |
Dillon A D, Ghidiu M J, Krick A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater, 2016, 26(23): 4162 doi: 10.1002/adfm.201600357
|
[12] |
Sang X H, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 2016, 10(10): 9193 doi: 10.1021/acsnano.6b05240
|
[13] |
Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502 doi: 10.1126/science.1241488
|
[14] |
Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516: 78 doi: 10.1038/nature13970
|
[15] |
武偉, 王恩會, 楊濤, 等. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能. 工程科學學報, 2021, 43(6):808
Wu W, Wang E H, Yang T, et al. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films. Chin J Eng, 2021, 43(6): 808
|
[16] |
Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie Int Ed, 2015, 54(13): 3907 doi: 10.1002/anie.201410174
|
[17] |
Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett, 2015, 6(20): 4026 doi: 10.1021/acs.jpclett.5b01895
|
[18] |
Seh Z W, Fredrickson K D, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett, 2016, 1(3): 589 doi: 10.1021/acsenergylett.6b00247
|
[19] |
Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137 doi: 10.1126/science.aag2421
|
[20] |
Halim J, Lukatskaya M R, Cook K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater, 2014, 26(7): 2374 doi: 10.1021/cm500641a
|
[21] |
Hantanasirisakul K, Zhao M Q, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater, 2016, 2(6): 1600050 doi: 10.1002/aelm.201600050
|
[22] |
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater, 2017, 29(18): 7633 doi: 10.1021/acs.chemmater.7b02847
|
[23] |
Zhang C F, McKeon L, Kremer M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun, 2019, 10: 1795 doi: 10.1038/s41467-019-09398-1
|
[24] |
Sun N, Zhu Q Z, Anasori B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater, 2019, 29(51): 1906282 doi: 10.1002/adfm.201906282
|
[25] |
Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater, 2015, 27(23): 3501 doi: 10.1002/adma.201500604
|
[26] |
Mashtalir O, Naguib M, Mochalin V N, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun, 2013, 4: 1716 doi: 10.1038/ncomms2664
|
[27] |
Lipatov A, Alhabeb M, Lukatskaya M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater, 2016, 2(12): 1600255 doi: 10.1002/aelm.201600255
|
[28] |
Sun W, Shah S A, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A, 2017, 5(41): 21663 doi: 10.1039/C7TA05574A
|
[29] |
Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc, 2019, 141(11): 4730 doi: 10.1021/jacs.9b00574
|
[30] |
Xia F J, Lao J C, Yu R H, et al. Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale, 2019, 11(48): 23330 doi: 10.1039/C9NR07236E
|
[31] |
Naguib M, Mashtalir O, Lukatskaya M R, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun, 2014, 50(56): 7420 doi: 10.1039/C4CC01646G
|
[32] |
Ghassemi H, Harlow W, Mashtalir O, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem A, 2014, 2(35): 14339 doi: 10.1039/C4TA02583K
|
[33] |
Narayanasamy M, Kirubasankar B, Shi M J, et al. Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem Commun, 2020, 56(47): 6412 doi: 10.1039/D0CC01802C
|
[34] |
Lotfi R, Naguib M, Yilmaz D E, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A, 2018, 6(26): 12733 doi: 10.1039/C8TA01468J
|
[35] |
Zhao X F, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1(2): 513 doi: 10.1016/j.matt.2019.05.020
|
[36] |
Huang S H, Mochalin V N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg Chem, 2019, 58(3): 1958 doi: 10.1021/acs.inorgchem.8b02890
|
[37] |
Ahmed B, Anjum D H, Hedhili M N, et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016, 8(14): 7580 doi: 10.1039/C6NR00002A
|
[38] |
Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387 doi: 10.1039/C9NR00084D
|
[39] |
Tang J, Mathis T S, Kurra N, et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew Chem Int Ed, 2019, 58(49): 17849 doi: 10.1002/anie.201911604
|
[40] |
Habib T, Zhao X, Shah S A, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Mater Appl, 2019, 3: 8 doi: 10.1038/s41699-019-0089-3
|
[41] |
Peng J H, Chen X Z, Ong W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem, 2019, 5(1): 18 doi: 10.1016/j.chempr.2018.08.037
|
[42] |
Mishra A, Srivastava P, Carreras A, et al. Atomistic origin of phase stability in oxygen-functionalized MXene: A comparative study. J Phys Chem C, 2017, 121(34): 18947 doi: 10.1021/acs.jpcc.7b06162
|
[43] |
Zhang C J, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater, 2017, 29(11): 4848 doi: 10.1021/acs.chemmater.7b00745
|
[44] |
Feng A H, Yu Y, Jiang F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram Int, 2017, 43(8): 6322 doi: 10.1016/j.ceramint.2017.02.039
|
[45] |
Mathis T S, Maleski K, Goad A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 2021, 15(4): 6420 doi: 10.1021/acsnano.0c08357
|
[46] |
Lee Y, Kim S J, Kim Y J, et al. Oxidation-resistant titanium carbide MXene films. J Mater Chem A, 2020, 8(2): 573 doi: 10.1039/C9TA07036B
|
[47] |
Zhao X F, Holta D E, Tan Z Y, et al. Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl Nano Mater, 2020, 3(11): 10578 doi: 10.1021/acsanm.0c02473
|
[48] |
Lao J C, Lv R J, Gao J, et al. Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS Nano, 2018, 12(12): 12464 doi: 10.1021/acsnano.8b06708
|
[49] |
Natu V, Hart J L, Sokol M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem Int Ed, 2019, 58(36): 12655 doi: 10.1002/anie.201906138
|
[50] |
Lee G S, Yun T, Kim H, et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722 doi: 10.1021/acsnano.0c04411
|
[51] |
Ding Y, Xiang S L, Zhi W Q, et al. Realizing ultra-stable Ti3C2-MXene in aqueous solution via surface grafting with ionomers. Soft Matter, 2021, 17(18): 4703 doi: 10.1039/D1SM00508A
|
[52] |
Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater, 2017, 29(24): 1607017 doi: 10.1002/adma.201607017
|
[53] |
Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249 doi: 10.1016/j.nanoen.2017.02.043
|
[54] |
Yang T, Li Q, Chang X W, et al. Preparation of TiOxNy/TiN composites for photocatalytic hydrogen evolution under visible light. Phys Chem Chem Phys, 2015, 17(43): 28782 doi: 10.1039/C5CP04768D
|
[55] |
Hou X M, Li Q, Zhang L Q, et al. Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafast-charging/discharging and excellent stable supercapacitors. J Power Sources, 2018, 396: 319 doi: 10.1016/j.jpowsour.2018.06.033
|
[56] |
Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater, 2018, 8(13): 1702485 doi: 10.1002/aenm.201702485
|
[57] |
Jiang G Y, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J, 2019, 373: 1309 doi: 10.1016/j.cej.2019.05.119
|