<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
YANG Yan, LIU Zhi-jie, HAN jiang-tao, LI Qing, HE Wei. Overview of actuators, modeling, and control methods for soft manipulators[J]. Chinese Journal of Engineering, 2022, 44(12): 2124-2137. doi: 10.13374/j.issn2095-9389.2021.06.10.001
Citation: YANG Yan, LIU Zhi-jie, HAN jiang-tao, LI Qing, HE Wei. Overview of actuators, modeling, and control methods for soft manipulators[J]. Chinese Journal of Engineering, 2022, 44(12): 2124-2137. doi: 10.13374/j.issn2095-9389.2021.06.10.001

Overview of actuators, modeling, and control methods for soft manipulators

doi: 10.13374/j.issn2095-9389.2021.06.10.001
More Information
  • Corresponding author: E-mail: liqing@ies.ustb.edu.cn
  • Received Date: 2021-06-10
    Available Online: 2021-08-03
  • Publish Date: 2022-12-01
  • Inspired by the biological organs in nature, many robots have been developed and successfully applied by imitating the characteristics of different animals. The design inspiration of a soft robot comes from the bending movement of an elephant trunk and an octopus arm. They can use their soft structure to effectively adapt to a complex and changeable environment and complete various complex operations. Their excellent flexibility and bending have attracted the interest of researchers. Continuing breakthroughs in materials science, chemistry, control, and other disciplines, and in the observation and modeling of soft organisms such as the octopus, worm, and starfish have led to a new robot research direction—soft robot. Soft manipulators are made of soft materials and can be used to accomplish tasks that rigid manipulators cannot accomplish, such as detecting in an unstructured environment, grasping fragile objects, and safer man-machine cooperation. Many countries are investing in this area; soft manipulators of various shapes and functions have been designed, using different manufacturing materials and driving, modeling, and control methods, exhibiting the uniqueness of each device. The driving ways of the soft manipulator are different according to their task purposes. This paper first studies three main driving ways of the soft manipulator: (1) tendon driving (tendon driving), (2) shape memory alloy driving (SMA driving), and (3) pneumatic driving (pneumatic driving). Modeling and control methods of soft manipulators in different driving modes are then studied. Finally, the development of soft manipulators is summarized and prospected from three aspects: (1) driving way, (2) modeling methods, and (3) control methods.

     

  • loading
  • [1]
    王田苗, 郝雨飛, 楊興幫, 等. 軟體機器人: 結構、驅動、傳感與控制. 機械工程學報, 2017, 53(13):1 doi: 10.3901/JME.2017.13.001

    Wang T M, Hao Y F, Yang X B, et al. Soft robotics: structure, actuation, sensing and control. J Mech Eng, 2017, 53(13): 1 doi: 10.3901/JME.2017.13.001
    [2]
    賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685

    He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685
    [3]
    Grissom M D, Chitrakaran V, Dienno D, et al. Design and experimental testing of the OctArm soft robot manipulator // Proceedings of SPIE, Unmanned Systems Technology VIII. Orlando, 2006, 6230: 491
    [4]
    Neppalli S, Jones B, McMahan W, et al. OctArm - A soft robotic manipulator // 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, 2007: 2569
    [5]
    Kier W M, Stella M P. The arrangement and function of octopus arm musculature and connective tissue. J Morphol, 2007, 268(10): 831 doi: 10.1002/jmor.10548
    [6]
    Sumbre G, Fiorito G, Flash T, et al. Motor control of flexible octopus arms. Nature, 2005, 433(7026): 595 doi: 10.1038/433595a
    [7]
    Cianchetti M, Arienti A, Follador M, et al. Design concept and validation of a robotic arm inspired by the octopus. Mater Sci Eng C, 2011, 31(6): 1230 doi: 10.1016/j.msec.2010.12.004
    [8]
    李鐵風, 李國瑞, 梁藝鳴, 等. 軟體機器人結構機理與驅動材料研究綜述. 力學學報, 2016, 48(4):756 doi: 10.6052/0459-1879-16-159

    Li T F, Li G R, Liang Y M, et al. Review of materials and structures in soft robotics. Chin J Theor Appl Mech, 2016, 48(4): 756 doi: 10.6052/0459-1879-16-159
    [9]
    Chen G, Pham M T, Redarce T. A semi-autonomous micro-robotic system for Colonoscopy // IEEE International Conference on Robotics and Biomimetics. Bangkok, 2009: 703
    [10]
    Cianchetti M, Ranzani T, Gerboni G, et al. Soft robotics technologies to address shortcomings in today's minimally invasive surgery: The STIFF-FLOP approach. Soft Robotics, 2014, 1(2): 122 doi: 10.1089/soro.2014.0001
    [11]
    Deng T, Wang H S, Chen W D, et al. Development of a new cable-driven soft robot for cardiac ablation // Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen, 2013: 728
    [12]
    Hawkes E W, Blumenschein L H, Greer J D, et al. A soft robot that navigates its environment through growth. Sci Robot, 2017, 2(8): eaan3028 doi: 10.1126/scirobotics.aan3028
    [13]
    Amend J R, Brown E, Rodenberg N, et al. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans Robotics, 2012, 28(2): 341 doi: 10.1109/TRO.2011.2171093
    [14]
    Roche E T, Wohlfarth R, Overvelde J T B, et al. A bioinspired soft actuated material. Adv Mater, 2014, 26(8): 1200 doi: 10.1002/adma.201304018
    [15]
    Hao Y F, Gong Z Y, Xie Z X, et al. Universal soft pneumatic robotic gripper with variable effective length //35th Chinese control conference (CCC). Chengdu, 2016: 6109
    [16]
    Trivedi D, Lotfi A, Rahn C D. Geometrically exact models for soft robotic manipulators. IEEE Trans Robotics, 2008, 24(4): 773 doi: 10.1109/TRO.2008.924923
    [17]
    Kapadia A, Walker I D. Task-space control of extensible continuum manipulators // 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, 2011: 1087
    [18]
    Kapadia A D, Fry K E, Walker I D. Empirical investigation of closed-loop control of extensible continuum manipulators // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 329
    [19]
    Falkenhahn V, Hildebrandt A, Sawodny O. Trajectory optimization of pneumatically actuated, redundant continuum manipulators // 2014 American Control Conference. Portland, 2014: 4008
    [20]
    Marchese A D, Tedrake R, Rus D. Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. Int J Robotics Res, 2016, 35(8): 1000 doi: 10.1177/0278364915587926
    [21]
    Santina C D, Rus D. Control oriented modeling of soft robots: The polynomial curvature case. IEEE Robotics Autom Lett, 2019, 5(2): 290
    [22]
    Santina C D, Bicchi A, Rus D. On an improved state parametrization for soft robots with piecewise constant curvature and its use in model based control. IEEE Robotics Autom Lett, 2020, 5(2): 1001 doi: 10.1109/LRA.2020.2967269
    [23]
    Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot. PNAS, 2011, 108(51): 20400 doi: 10.1073/pnas.1116564108
    [24]
    Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists. Angew Chem Int Ed, 2011, 50(8): 1890 doi: 10.1002/anie.201006464
    [25]
    Martinez R V, Branch J L, Fish C R, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv Mater, 2013, 25(2): 205 doi: 10.1002/adma.201203002
    [26]
    Martinez R V, Glavan A C, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage. Adv Funct Mater, 2014, 24(20): 3003 doi: 10.1002/adfm.201303676
    [27]
    Martinez R V, Fish C R, Chen X, et al. Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Adv Funct Mater, 2012, 22(7): 1376 doi: 10.1002/adfm.201102978
    [28]
    Lin H T, Leisk G G, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim, 2011, 6(2): 026007 doi: 10.1088/1748-3182/6/2/026007
    [29]
    Kim H J, Song S H, Ahn S H. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater Struct, 2013, 22(1): 014007 doi: 10.1088/0964-1726/22/1/014007
    [30]
    Song S H, Kim M S, Rodrigue H, et al. Turtle mimetic soft robot with two swimming gaits. Bioinspir Biomim, 2016, 11(3): 036010 doi: 10.1088/1748-3190/11/3/036010
    [31]
    Wang Z L, Hang G R, Wang Y W, et al. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater Struct, 2008, 17(2): 025039 doi: 10.1088/0964-1726/17/2/025039
    [32]
    Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomim, 2011, 6(3): 036004 doi: 10.1088/1748-3182/6/3/036004
    [33]
    Colorado J, Barrientos A, Rossi C, et al. Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators. Bioinspir Biomim, 2012, 7(3): 036006 doi: 10.1088/1748-3182/7/3/036006
    [34]
    Tadesse Y, Hong D, Priya S. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. J Mech Robotics, 2011, 3(1): 011008 doi: 10.1115/1.4003005
    [35]
    Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Ed, 2013, 52(10): 2892 doi: 10.1002/anie.201209540
    [36]
    Bartlett N W, Tolley M T, Overvelde J T B, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349(6244): 161 doi: 10.1126/science.aab0129
    [37]
    Suzumori K. Flexible microactuator: 1st Report, Static characteristics of 3 DOF actuator. Trans JSME(C), 1989, 55(518): 2547 doi: 10.1299/kikaic.55.2547
    [38]
    Zhang R, Wang H, Chen W. Shape control for a soft robot inspired by octopus. Robot, 2016, 38(06): 754
    [39]
    Wang H S, Zhang R X, Chen W D, et al. Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans Mechatron, 2016, 21(6): 2977 doi: 10.1109/TMECH.2016.2606491
    [40]
    Wang H S, Yang B H, Liu Y T, et al. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans Mechatron, 2017, 22(1): 41 doi: 10.1109/TMECH.2016.2613410
    [41]
    Wang H S, Wang C, Chen W D, et al. Three-dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Trans Mechatron, 2017, 22(1): 18 doi: 10.1109/TMECH.2016.2606547
    [42]
    Renda F, Giorelli M, Calisti M, et al. Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans Robotics, 2014, 30(5): 1109 doi: 10.1109/TRO.2014.2325992
    [43]
    Oliver-Butler K, Till J, Rucker C. Continuum robot stiffness under external loads and prescribed tendon displacements. IEEE Trans Robotics, 2019, 35(2): 403 doi: 10.1109/TRO.2018.2885923
    [44]
    Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir Biomim, 2012, 7(2): 025004
    [45]
    Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir Biomim, 2012, 7(2): 025005
    [46]
    Mazzolai B, Margheri L, Dario P, et al. Measurements of octopus arm elongation: Evidence of differences by body size and gender. J Exp Mar Biol Ecol, 2013, 447: 160 doi: 10.1016/j.jembe.2013.02.025
    [47]
    She Y, Chen J, Shi H L, et al. Modeling and validation of a novel bending actuator for soft robotics applications. Soft Robotics, 2016, 3(2): 71 doi: 10.1089/soro.2015.0022
    [48]
    楊立麒, 黃志鵬, 歐卓煜, 等. 基于SMA的軟體機器人控制研究與分析. 電子世界, 2019(9):52 doi: 10.19353/j.cnki.dzsj.2019.09.021

    Yang L Q, Huang Z P, Ou Z Y, et al. Research and analysis of soft robot control based on SMA. Electron World, 2019(9): 52 doi: 10.19353/j.cnki.dzsj.2019.09.021
    [49]
    鄭俊君, 宋小波, 姜祖輝, 等. 一種氣動靜壓軟體機器人的驅動力產生機理及控制策略. 機器人, 2014, 36(5):513

    Zheng J J, Song X B, Jiang Z H, et al. The driving force mechanism and control strategy of a pneumatic hydrostatic soft robot. Robot, 2014, 36(5): 513
    [50]
    費燕瓊, 龐武, 于文博. 氣壓驅動軟體機器人運動研究. 機械工程學報, 2017, 53(13):14 doi: 10.3901/JME.2017.13.014

    Fei Y Q, Pang W, Yu W B. Movement of air-driven soft robot. J Mech Eng, 2017, 53(13): 14 doi: 10.3901/JME.2017.13.014
    [51]
    Marchese A D, Komorowski K, Onal C D, et al. Design and control of a soft and continuously deformable 2D robotic manipulation system // 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, 2014: 2189
    [52]
    Marchese A D, Katzschmann R K, Rus D. Whole arm planning for a soft and highly compliant 2D robotic manipulator // 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, 2014: 554
    [53]
    Ansari Y, Manti M, Falotico E, et al. Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int J Adv Robotic Syst, 2017, 14(2): 1729881416687132
    [54]
    De Falco I, Cianchetti M, Menciassi A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspir Biomim, 2017, 12(5): 056008 doi: 10.1088/1748-3190/aa7ccd
    [55]
    陳剛, 鄔元富, 李偉, 等. 面向結腸鏡軟體機器人設計與建模仿真. 重慶理工大學學報(自然科學), 2020, 34(12):157

    Chen G, Wu Y F, Li W, et al. Design and modeling of the soft robot for colonoscopy. J Chongqing Univ Technol Nat Sci, 2020, 34(12): 157
    [56]
    He B, Wang Z P, Li Q, et al. An analytic method for the kinematics and dynamics of a multiple-backbone continuum robot. Int J Adv Robotic Syst, 2013, 10(1): 84 doi: 10.5772/54051
    [57]
    Wang L, Simaan N. Geometric calibration of continuum robots: Joint space and equilibrium shape deviations. IEEE Trans Robotics, 2019, 35(2): 387 doi: 10.1109/TRO.2018.2881049
    [58]
    George Thuruthel T, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators: A survey. Soft Robot, 2018, 5(2): 149 doi: 10.1089/soro.2017.0007
    [59]
    Wang L, del Giudice G, Simaan N. Simplified kinematics of continuum robot equilibrium modulation via moment coupling effects and model calibration. J Mech Robotics, 2019, 11(5): 051013 doi: 10.1115/1.4044162
    [60]
    Lunni D, Cianchetti M, Falotico E, et al. A closed loop shape control for bio-inspired soft arms. Biomim Biohybrid Syst, 2017, 10384: 567
    [61]
    Xavier M S, Fleming A J, Yong Y K. Nonlinear Estimation and Control of Bending Soft Pneumatic Actuators Using Feedback Linearization and UKF. IEEE/ASME Trans Mechatron, 2022, 27(4): 1919 doi: 10.1109/TMECH.2022.3155790
    [62]
    俞曉瑾. 柔性機械臂的運動學和動力學建模及視覺伺服控制[學位論文]. 上海: 上海交通大學, 2013

    Yu X J. Kinematics and Dynamics Modeling and Visual Servo Control for Soft Robotic Manipulator [Dissertation]. Shanghai: Shanghai Jiaotong University, 2013
    [63]
    Webster R J III, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. Int J Robotics Res, 2010, 29(13): 1661 doi: 10.1177/0278364910368147
    [64]
    徐璠, 王賀升. 軟體機械臂水下自適應魯棒視覺伺服. 自動化學報,https://doi.org/10.16383/j.aas.c200457

    Xu F, Wang H S. Adaptive robust visual servoing control of a soft manipulator in underwater environment. Acta Automatica Sinica,https://doi.org/10.16383/j.aas.c200457
    [65]
    劉璇, 陳衛, 朱美龍, 等. 水下軟體機械臂的設計及控制分析. 船舶工程, 2020, 42(6):21 doi: 10.13788/j.cnki.cbgc.2020.06.05

    Liu X, Chen W, Zhu M L, et al. Design and control analysis of underwater software robot arm. Ship Eng, 2020, 42(6): 21 doi: 10.13788/j.cnki.cbgc.2020.06.05
    [66]
    Han J T, Han Z J, Liu Z J. Adaptive control for a constrained soft manipulator with prescribed performance. IFAC-PapersOnLine, 2020, 53(5): 524 doi: 10.1016/j.ifacol.2021.04.198
    [67]
    Han J T, Liu Z J, He W. Adaptive neural network control for a soft robotic manipulator // 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). Guangzhou, 2020: 393
    [68]
    Li J R, Wang J B, Fei Y Q. Nonlinear modeling on a SMA actuated circular soft robot with closed-loop control system. Nonlinear Dyn, 2019, 96(4): 2627 doi: 10.1007/s11071-019-04949-z
    [69]
    Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus. Adv Robotics, 2012, 26(7): 709 doi: 10.1163/156855312X626343
    [70]
    Yang H, Xu M, Li W H, et al. Design and implementation of a soft robotic arm driven by SMA coils. IEEE Trans Ind Electron, 2019, 66(8): 6108 doi: 10.1109/TIE.2018.2872005
    [71]
    Copaci D S, Blanco D, Martin-Clemente A, et al. Flexible shape memory alloy actuators for soft robotics: Modelling and control. Int J Adv Robotic Syst, 2020, 17(1): 172988141988674
    [72]
    Li J F, Pi Y Y. Fuzzy time delay algorithms for position control of soft robot actuated by shape memory alloy. Int J Control Autom Syst, 2021, 19(6): 2203 doi: 10.1007/s12555-018-0313-5
    [73]
    Sanan S, Lynn P S, Griffith S T. Pneumatic torsional actuators for inflatable robots. J Mech Robotics, 2014, 6(3): 031003 doi: 10.1115/1.4026629
    [74]
    You X K, Zhang Y X, Chen X T, et al. Model-free control for soft manipulators based on reinforcement learning // 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, 2017: 24
    [75]
    王寧揚, 孫昊, 姜皓, 等. 一種基于蜂巢氣動網絡的軟體夾持器抓取策略研究. 機器人, 2016, 38(3):371 doi: 10.13973/j.cnki.robot.2016.0371

    Wang N Y, Sun H, Jiang H, et al. On grasp strategy of honeycomb PneuNets soft gripper. Robot, 2016, 38(3): 371 doi: 10.13973/j.cnki.robot.2016.0371
    [76]
    Gong Z Y, Xie Z X, Yang X B, et al. Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm // 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao, 2016: 509
    [77]
    Giorelli M, Renda F, Ferri G, et al. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, 2013: 5033
    [78]
    Chattopadhyay S, Bhattacherjee S, Bandyopadhyay S, et al. Control of single-segment continuum robots: Reinforcement learning vs. neural network based PID // 2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT). Kannur, 2018: 222
    [79]
    Ansari Y, Manti M, Falotico E, et al. Multiobjective optimization for stiffness and position control in a soft robot arm module. IEEE Robotics Autom Lett, 2018, 3(1): 108 doi: 10.1109/LRA.2017.2734247
    [80]
    Qi P, Liu C, Ataka A, et al. Kinematic control of continuum manipulators using a fuzzy-model-based approach. IEEE Trans Ind Electron, 2016, 63(8): 5022 doi: 10.1109/TIE.2016.2554078
    [81]
    Jiang S R, Wang Y Y, Ju F, et al. A new fuzzy time-delay control for cable-driven robot. Int J Adv Robotic Syst, 2019, 16(2): 172988141983501
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(18)

    Article views (930) PDF downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频