Citation: | JIAN Xia-yan, JIN Jun-teng, WANG Yao, SHEN Qiu-yu, LIU Yong-chang. Recent progress on layered oxide cathode materials for sodium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 601-611. doi: 10.13374/j.issn2095-9389.2021.05.26.001 |
[1] |
Vaalma C, Buchholz D, Weil M, et al. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater, 2018, 3: 18013 doi: 10.1038/natrevmats.2018.13
|
[2] |
安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22
|
[3] |
Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater, 2016, 1: 16013 doi: 10.1038/natrevmats.2016.13
|
[4] |
郭晉芝, 萬放, 吳興隆, 等. 鈉離子電池工作原理及關鍵電極材料研究進展. 分子科學學報, 2016, 32(4):265
Guo J Z, Wan F, Wu X L, et al. Sodium-ion batteries: Work mechanism and the research progress of key electrode materials. J Mol Sci, 2016, 32(4): 265
|
[5] |
Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries. Chem Rev, 2014, 114(23): 11636 doi: 10.1021/cr500192f
|
[6] |
劉永暢, 陳程成, 張寧, 等. 鈉離子電池關鍵材料研究及應用進展. 電化學, 2016, 22(5):437
Liu Y C, Chen C C, Zhang N, et al. Research and application of key materials for sodium-ion batteries. J Electrochem, 2016, 22(5): 437
|
[7] |
Slater M D, Kim D, Lee E, et al. Sodium-ion batteries. Adv Funct Mater, 2013, 23(8): 947 doi: 10.1002/adfm.201200691
|
[8] |
Zuo W H, Qiu J M, Liu X S, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat Commun, 2020, 11: 3544 doi: 10.1038/s41467-020-17290-6
|
[9] |
曹余良. 鈉離子電池機遇與挑戰. 儲能科學與技術, 2020, 9(3):757
Cao Y L. The opportunities and challenges of sodium ion battery. Energy Storage Sci Technol, 2020, 9(3): 757
|
[10] |
Liu Q N, Hu Z, Chen M Z, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small, 2019, 15(32): 1805381 doi: 10.1002/smll.201805381
|
[11] |
Shen X, Zhao J M, Li Y Q, et al. Controlled synthesis of Na3(VOPO4)2F cathodes with an ultralong cycling performance. ACS Appl Energy Mater, 2019, 2(10): 7474 doi: 10.1021/acsaem.9b01458
|
[12] |
Jin T, Li H X, Zhu K J, et al. Polyanion-type cathode materials for sodium-ion batteries. Chem Soc Rev, 2020, 49(8): 2342 doi: 10.1039/C9CS00846B
|
[13] |
Chen S Q, Wu C, Shen L F, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater, 2017, 29(48): 1700431 doi: 10.1002/adma.201700431
|
[14] |
Lee M, Hong J, Lopez J, et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat Energy, 2017, 2(11): 861 doi: 10.1038/s41560-017-0014-y
|
[15] |
Mao Y J, Chen Y T, Qin J, et al. Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced Prussian blue for high performance Na-ion battery cathode. Nano Energy, 2019, 58: 192 doi: 10.1016/j.nanoen.2019.01.048
|
[16] |
Shao M M, Wang B, Liu M C, et al. A high-voltage and cycle stable aqueous rechargeable Na-ion battery based on Na2Zn3[Fe(CN)6]2-NaTi2(PO4)3 intercalation chemistry. ACS Appl Energy Mater, 2019, 2(8): 5809 doi: 10.1021/acsaem.9b00935
|
[17] |
Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Phys B+C, 1980, 99(1-4): 81 doi: 10.1016/0378-4363(80)90214-4
|
[18] |
Wang P F, You Y, Yin Y X, et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed, 2016, 128(26): 7571 doi: 10.1002/ange.201602202
|
[19] |
Fang Y J, Yu X Y, Lou X W. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew Chem Int Ed, 2017, 56(21): 5801 doi: 10.1002/anie.201702024
|
[20] |
Zhou P F, Che Z N, Ma F T, et al. Designing water/air-stable P2-layered cathodes with delayed P2-O2 phase transition by composition and structure engineering for sodium-ion batteries at high voltage. Chem Eng J, 2021, 420: 127667 doi: 10.1016/j.cej.2020.127667
|
[21] |
Sun Y K. Direction for commercialization of O3-Type layered cathodes for sodium-ion batteries. ACS Energy Lett, 2020, 5(4): 1278 doi: 10.1021/acsenergylett.0c00597
|
[22] |
Zhang C, Gao R, Zheng L R, et al. New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. ACS Appl Mater Interfaces, 2018, 10(13): 10819 doi: 10.1021/acsami.7b18226
|
[23] |
Liu J T, Kan W H, Ling C D. Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: Structural evolution and anion redox. J Power Sources, 2021, 481: 229139 doi: 10.1016/j.jpowsour.2020.229139
|
[24] |
Gao R M, Zheng Z J, Wang P F, et al. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Mater, 2020, 30: 9 doi: 10.1016/j.ensm.2020.04.040
|
[25] |
Deng J Q, Luo W B, Lu X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-Type layered oxide cathode. Adv Energy Mater, 2018, 8(5): 1701610 doi: 10.1002/aenm.201701610
|
[26] |
Jiang Y L, Zou G Q, Hou H S, et al. Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano, 2019, 13(9): 10787 doi: 10.1021/acsnano.9b05614
|
[27] |
Jin J T, Liu Y C, Pang X L, et al. A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries. Sci China Chem, 2021, 64(3): 385 doi: 10.1007/s11426-020-9897-8
|
[28] |
Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104(10): 4271 doi: 10.1021/cr020731c
|
[29] |
Rai A K, Anh L T, Gim J, et al. Electrochemical properties of NaxCoO2 (x~0.71) cathode for rechargeable sodium-ion batteries. Ceram Int, 2014, 40(1): 2411
|
[30] |
Lei Y C, Li X, Liu L, et al. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem Mater, 2014, 26(18): 5288 doi: 10.1021/cm5021788
|
[31] |
Yabuuchi N, Yoshida H, Komaba S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry, 2012, 80(10): 716 doi: 10.5796/electrochemistry.80.716
|
[32] |
Guo S H, Yu H J, Jian Z L, et al. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem, 2014, 7(8): 2115 doi: 10.1002/cssc.201402138
|
[33] |
Zhao J, Zhao L W, Dimov N, et al. Electrochemical and thermal properties of α-NaFeO2 Cathode for Na-ion batteries. J Electrochem Soc, 2013, 160(5): A3077 doi: 10.1149/2.007305jes
|
[34] |
Billaud J, Clément R J, Armstrong A R, et al. Β-NaMnO2: A high-performance cathode for sodium-ion batteries. J Am Chem Soc, 2014, 136(49): 17243 doi: 10.1021/ja509704t
|
[35] |
Piper L F J, Quackenbush N F, Sallis S, et al. Elucidating the nature of pseudo jahn-teller distortions in LixMnPO4: Combining density functional theory with soft and hard X-ray spectroscopy. J Phys Chem C, 2013, 117(20): 10383 doi: 10.1021/jp3122374
|
[36] |
Han M H, Gonzalo E, Casas-Cabanas M, et al. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J Power Sources, 2014, 258: 266 doi: 10.1016/j.jpowsour.2014.02.048
|
[37] |
Didier C, Guignard M, Suchomel M R, et al. Thermally and electrochemically driven topotactical transformations in sodium layered oxides NaxVO2. Chem Mater, 2016, 28(5): 1462 doi: 10.1021/acs.chemmater.5b04882
|
[38] |
Liu Q N, Hu Z, Chen M Z, et al. P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage. J Mater Chem A, 2019, 7(15): 9215 doi: 10.1039/C8TA11927A
|
[39] |
Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater, 2012, 11(6): 512 doi: 10.1038/nmat3309
|
[40] |
Liu Y C, Wang C C, Zhao S, et al. Mitigation of Jahn–Teller distortion and Na+/vacancy ordering in a distorted manganese oxide cathode material by Li substitution. Chem Sci, 2021, 12(3): 1062 doi: 10.1039/D0SC05427E
|
[41] |
Bai X, Sathiya M, Mendoza-Sánchez B, et al. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1?yZnyO2 (0<y<0.23). Adv Energy Mater, 2018, 8(32): 1802379 doi: 10.1002/aenm.201802379
|
[42] |
Gao X, Chen J, Liu H Q, et al. Copper-substituted NaxMO2 (M = Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation. Chem Eng J, 2021, 406: 126830 doi: 10.1016/j.cej.2020.126830
|
[43] |
Wang C C, Liu L J, Zhao S, et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat Commun, 2021, 12: 2256 doi: 10.1038/s41467-021-22523-3
|
[44] |
Jin T, Wang P F, Wang Q C, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew Chem Int Ed, 2020, 132(34): 14619 doi: 10.1002/ange.202003972
|
[45] |
Zhou C J, Yang L C, Zhou C G, et al. Co-substitution enhances the rate capability and stabilizes the cyclic performance of O3-Type cathode NaNi0.45-xMn0.25Ti0.3CoxO2 for sodium-ion storage at high voltage. ACS Appl Mater Interfaces, 2019, 11(8): 7906 doi: 10.1021/acsami.8b17945
|
[46] |
Chen J, Deng W, Gao X, et al. Demystifying the lattice oxygen redox in layered oxide cathode materials of lithium-ion batteries. ACS Nano, 2021, 15(4): 6061 doi: 10.1021/acsnano.1c00304
|
[47] |
Jean R. Anion-cation redox competition and the formation of new compounds in highly covalent systems. Chem A Eur J, 1996, 2(9): 1053 doi: 10.1002/chem.19960020904
|
[48] |
Assat G, Tarascon J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy, 2018, 3(5): 373 doi: 10.1038/s41560-018-0097-0
|
[49] |
Perez A J, Jacquet Q, Batuk D, et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat Energy, 2017, 2(12): 954 doi: 10.1038/s41560-017-0042-7
|
[50] |
Do J, Kim I, Kim H, et al. Towards stable Na-rich layered transition metal oxides for high energy density sodium-ion batteries. Energy Storage Mater, 2020, 25: 62 doi: 10.1016/j.ensm.2019.10.031
|
[51] |
Clément R J, Bruce P G, Grey C P. Review—manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc, 2015, 162(14): A2589 doi: 10.1149/2.0201514jes
|
[52] |
Mortemard de Boisse B, Liu G D, Ma J T, et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat Commun, 2016, 7: 11397 doi: 10.1038/ncomms11397
|
[53] |
Perez A J, Batuk D, Saubanère M, et al. Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3. Chem Mater, 2016, 28(22): 8278 doi: 10.1021/acs.chemmater.6b03338
|
[54] |
Nanba Y, Iwao T, Boisse B M, et al. Redox potential paradox in NaxMO2 for sodium-ion battery cathodes. Chem Mater, 2016, 28(4): 1058 doi: 10.1021/acs.chemmater.5b04289
|
[55] |
Hu Y, Liu T F, Cheng C, et al. Quantification of anionic redox chemistry in a prototype Na-rich layered oxide. ACS Appl Mater Interfaces, 2020, 12(3): 3617 doi: 10.1021/acsami.9b19204
|
[56] |
Song S F, Kotobuki M, Zheng F, et al. Y-doped Na2ZrO3: A Na-rich layered oxide as a high-capacity cathode material for sodium-ion batteries. ACS Sustain Chem Eng, 2017, 5(6): 4785 doi: 10.1021/acssuschemeng.7b00196
|
[57] |
Du K, Zhu J Y, Hu G R, et al. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ Sci, 2016, 9(8): 2575 doi: 10.1039/C6EE01367H
|
[58] |
Rong X H, Hu E Y, Lu Y X, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule, 2019, 3(2): 503 doi: 10.1016/j.joule.2018.10.022
|
[59] |
Song B H, Hu E Y, Liu J, et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox. J Mater Chem A, 2019, 7(4): 1491 doi: 10.1039/C8TA09422E
|
[60] |
Konarov A, Jo J H, Choi J U, et al. Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy, 2019, 59: 197 doi: 10.1016/j.nanoen.2019.02.042
|
[61] |
Shi D R, Wang T, Shadike Z, et al. Anionic redox reaction triggered by trivalent Al3+ in P3-Na0.65Mn0.5Al0.5O2. Chem Commun, 2021, 57(23): 2867 doi: 10.1039/D1CC00373A
|
[62] |
Zheng W, Liu Q, Wang Z Y, et al. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Mater, 2020, 28: 300 doi: 10.1016/j.ensm.2020.03.016
|
[63] |
Zhang K, Kim D, Hu Z, et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries. Nat Commun, 2019, 10: 5203 doi: 10.1038/s41467-018-07646-4
|
[64] |
Wang Q C, Meng J K, Yue X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc, 2019, 141(2): 840 doi: 10.1021/jacs.8b08638
|
[65] |
Xiao Y, Zhu Y F, Yao H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv Energy Mater, 2019, 9(19): 1803978 doi: 10.1002/aenm.201803978
|
[66] |
Xu H, Cheng C, Chu S Y, et al. Anion-cation synergetic contribution to high capacity, structurally stable cathode materials for sodium-ion batteries. Adv Funct Mater, 2020, 30(50): 2005164 doi: 10.1002/adfm.202005164
|
[67] |
Zhao C, Yang Q, Geng F, et al. Restraining oxygen loss and boosting reversible oxygen redox in a P2-type oxide cathode by trace anion substitution. ACS Appl Mater Interfaces, 2021, 13(1): 360 doi: 10.1021/acsami.0c16236
|
[68] |
Bianchini M, Gonzalo E, Drewett N E, et al. Layered P2–O3 sodium-ion cathodes derived from earth abundant elements. J Mater Chem A, 2018, 6(8): 3552 doi: 10.1039/C7TA11180K
|
[69] |
Yang L T, Amo J M L, Shadike Z, et al. A Co- and Ni-free P2/O3 biphasic lithium stabilized layered oxide for sodium-ion batteries and its cycling behavior. Adv Funct Mater, 2020, 30(42): 2003364 doi: 10.1002/adfm.202003364
|
[70] |
Chen C, Han Z, Chen S, et al. Core-shell layered oxide cathode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces, 2020, 12(6): 7144 doi: 10.1021/acsami.9b19260
|
[71] |
Zhao Q Q, Butt F K, Guo Z F, et al. High-voltage P2-type manganese oxide cathode induced by titanium gradient modification for sodium ion batteries. Chem Eng J, 2021, 403: 126308 doi: 10.1016/j.cej.2020.126308
|
[72] |
Yang D Z, Liao X Z, Shen J F, et al. A flexible and binder-free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high-performance sodium ion batteries. J Mater Chem A, 2014, 2(19): 6723 doi: 10.1039/C4TA00682H
|
[73] |
House R A, Maitra U, Pérez-Osorio M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature, 2020, 577(7791): 502 doi: 10.1038/s41586-019-1854-3
|
[74] |
Deng C J, Skinner P, Liu Y Z, et al. Li-substituted layered spinel cathode material for sodium ion batteries. Chem Mater, 2018, 30(22): 8145 doi: 10.1021/acs.chemmater.8b02614
|
[75] |
Shen Q Y, Zhao X D, Liu Y C, et al. Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode. Adv Sci, 2020, 7(21): 2002199 doi: 10.1002/advs.202002199
|
[76] |
Wang Y, Liu Y K, Liu Y C, et al. Recent advances in electrospun electrode materials for sodium-ion batteries. J Energy Chem, 2021, 54: 225 doi: 10.1016/j.jechem.2020.05.065
|
[77] |
Wang E H, Niu Y B, Yin Y X, et al. Manipulating electrode/electrolyte interphases of sodium-ion batteries: Strategies and perspectives. ACS Mater Lett, 2021, 3(1): 18 doi: 10.1021/acsmaterialslett.0c00356
|
[78] |
馬磊磊, 連芳, 張帆, 等. 高能量密度鋰離子電池層狀錳基正極材料研究進展. 工程科學學報, 2017, 39(2):167
Ma L L, Lian F, Zhang F, et al. Research progress of layered Mn-based cathode materials for high-energy-density lithium-ion batteries. Chin J Eng, 2017, 39(2): 167
|
[79] |
Zuo W H, Qiu J M, Liu X S, et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Mater, 2020, 26: 503 doi: 10.1016/j.ensm.2019.11.024
|
[80] |
Kong W J, Wang H B, Sun L M, et al. Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode. Appl Surf Sci, 2019, 497: 143814 doi: 10.1016/j.apsusc.2019.143814
|
[81] |
Li Y, Shi Q H, Yin X P, et al. Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chem Eng J, 2020, 402: 126181
|
[82] |
Moeez I, Susanto D, Ali G, et al. Effect of the interfacial protective layer on the NaFe0.5Ni0.5O2 cathode for rechargeable sodium-ion batteries. J Mater Chem A, 2020, 8(28): 13964 doi: 10.1039/D0TA02837A
|
[83] |
Wang Y, Tang K, Li X L, et al. Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chem Eng J, 2019, 372: 1066 doi: 10.1016/j.cej.2019.05.010
|