Citation: | LU Jie, YAN Bing-ji, ZHAO Wei, LI Peng, CHEN Dong, GUO Hong-wei. Comparison of the effect of various clustering algorithms on the furnace profile management[J]. Chinese Journal of Engineering, 2022, 44(12): 2081-2089. doi: 10.13374/j.issn2095-9389.2021.05.25.005 |
[1] |
萬利德, 李熠, 宋釗, 等. 武鋼8號高爐穩定順行高產操作特點. 煉鐵, 2020, 39(4):12
Wan L D, Li Y, Song Z, et al. Operation techniques for keeping stable smooth & high output production of WISCO’s No 8 BF. Ironmaking, 2020, 39(4): 12
|
[2] |
王俊, 徐輝, 張培峰, 等. 寶鋼4號高爐長期低耗生產管理. 煉鐵, 2020, 39(4):1
Wang J, Xu H, Zhang P F, et al. Management for maintaining low consumption production in Baosteel’s No 4 BF. Ironmaking, 2020, 39(4): 1
|
[3] |
Li X L, Liu D X, Jia C, et al. Multi-model control of blast furnace burden surface based on fuzzy SVM. Neurocomputing, 2015, 148: 209 doi: 10.1016/j.neucom.2013.09.067
|
[4] |
Jin F, Zhao J, Sheng C Y, et al. Causality diagram-based scheduling approach for blast furnace gas system. IEEE/CAA J Autom Sin, 2018, 5(2): 587 doi: 10.1109/JAS.2017.7510715
|
[5] |
王晨露, 陳先中, 侯慶文, 等. 基于高爐料線的RCS測量及SAR成像驗證. 工程科學學報, 2018, 40(8):979
Wang C L, Chen X Z, Hou Q W, et al. RCS measurement and SAR imaging verification based on blast furnace stock line. Chin J Eng, 2018, 40(8): 979
|
[6] |
Shi L, Wen Y B, Zhao G S, et al. Recognition of blast furnace gas flow center distribution based on infrared image processing. J Iron Steel Res Int, 2016, 23(3): 203 doi: 10.1016/S1006-706X(16)30035-8
|
[7] |
Hua C C, Wu J H, Li J P, et al. Silicon content prediction and industrial analysis on blast furnace using support vector regression combined with clustering algorithms. Neural Comput Appl, 2017, 28(12): 4111 doi: 10.1007/s00521-016-2292-x
|
[8] |
Chen K, Liang Y, Gao Z L, et al. Just-in-time correntropy soft sensor with noisy data for industrial silicon content prediction. Sensors, 2017, 17(8): 1830 doi: 10.3390/s17081830
|
[9] |
劉代飛, 張吉, 付強. 基于溫度場主元分析的高爐爐況深度學習預測建模. 冶金自動化, 2021, 45(3):42 doi: 10.3969/j.issn.1000-7059.2021.03.006
Liu D F, Zhang J, Fu Q. Deep learning prediction modeling of blast furnace condition based on principal component analysis of temperature field. Metall Ind Autom, 2021, 45(3): 42 doi: 10.3969/j.issn.1000-7059.2021.03.006
|
[10] |
王振陽, 江德文, 王新東, 等. 基于支持向量回歸與極限學習機的高爐鐵水溫度預測. 工程科學學報, 2021, 43(4):569
Wang Z Y, Jiang D W, Wang X D, et al. Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine. Chin J Eng, 2021, 43(4): 569
|
[11] |
Fontes D O L, Vasconcelos L G S, Brito R P. Blast furnace hot metal temperature and silicon content prediction using soft sensor based on fuzzy C-means and exogenous nonlinear autoregressive models. Comput Chem Eng, 2020, 141: 107028 doi: 10.1016/j.compchemeng.2020.107028
|
[12] |
Zhao J, Li X, Liu S, et al. Prediction of hot metal temperature based on data mining. High Temp Mater Process, 2021, 40(1): 87 doi: 10.1515/htmp-2021-0020
|
[13] |
陳令坤. 基于高效冶煉的高爐智能控制系統分析. 冶金自動化, 2021, 45(3):2
Chen L K. Analysis of intelligent control system used for high efficiency smelting in blast furnace. Metall Ind Autom, 2021, 45(3): 2
|
[14] |
閆炳基, 張建良, 國宏偉, 等. 基于主成分分析的高爐操作爐型評價. 東北大學學報(自然科學版), 2015, 36(7):952 doi: 10.3969/j.issn.1005-3026.2015.07.009
Yan B J, Zhang J L, Guo H W, et al. Evaluation of blast furnace operation profile based on principal component analysis(PCA). J Northeast Univ Nat Sci, 2015, 36(7): 952 doi: 10.3969/j.issn.1005-3026.2015.07.009
|
[15] |
曹英杰, 張建良, 國宏偉, 等. 基于TwoStep算法的國豐1號高爐操作爐型聚類分析與應用. 鋼鐵, 2013, 48(10):17 doi: 10.13228/j.boyuan.issn0449-749x.2013.10.011
Cao Y J, Zhang J L, Guo H W, et al. Clustering analysis and application of operative profile in Guofeng No 1 blast furnace based furance based on the algorithm of TwoStep. Iron Steel, 2013, 48(10): 17 doi: 10.13228/j.boyuan.issn0449-749x.2013.10.011
|
[16] |
陳令坤, 李佳. 基于模式識別的自學習型高爐冶煉專家系統的開發與應用. 東南大學學報(自然科學版), 2012, 42(增刊1): 117
Chen L K, Li J. Development and application of blast furnace expert system with self-learning function based on pattern recognition. J Southeast Univ Nat Sci, 2012, 42(Suppl 1): 117
|
[17] |
武森, 鄭錫村, 國宏偉. 數據挖掘技術在高爐爐型管理中的應用 // 全國第十屆企業信息化與工業工程學術年會論文集. 杭州, 2006:268
Wu S, Zhen X C, Guo H W. Application of data mining technique in blast furnace profile management // The 10th National Annual Conference on Enterprise Informatization and Industrial Engineering. Hangzhou, 2006: 268
|
[18] |
García F A, Campoy P, Mochón J, et al. A new “user-friendly” blast furnace advisory control system using a neural network temperature profile classifier. ISIJ Int, 2010, 50(5): 730 doi: 10.2355/isijinternational.50.730
|
[19] |
Saxena C, Prasad S, Lavanya A, et al. Classification of above burden profile using SOM and k-means. Ironmak Steelmak, 2007, 34(1): 5 doi: 10.1179/174328106X149851
|
[20] |
Velmurugan T, Santhanam T. A survey of partition based clustering algorithms in data mining: An experimental approach. Inf Technol J, 2011, 10(3): 478 doi: 10.3923/itj.2011.478.484
|
[21] |
Carlsson G, Mémoli F. Characterization, stability and convergence of hierarchical clusteringmethods. J Mach Learn Res, 2010, 11: 1425
|
[22] |
Jiang B, Pei J, Tao Y F, et al. Clustering uncertain data based on probability distribution similarity. IEEE Trans Knowl Data Eng, 2013, 25(4): 751 doi: 10.1109/TKDE.2011.221
|
[23] |
Al-Shammary D, Khalil I, Tari Z. A distributed aggregation and fast fractal clustering approach for SOAP traffic. J Netw Comput Appl, 2014, 41: 1 doi: 10.1016/j.jnca.2013.10.001
|
[24] |
McNicholas P D, Murphy T B. Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics, 2010, 26(21): 2705 doi: 10.1093/bioinformatics/btq498
|
[25] |
Xu D K, Tian Y J. A comprehensive survey of clustering algorithms. Ann Data Sci, 2015, 2(2): 165 doi: 10.1007/s40745-015-0040-1
|
[26] |
McKim C, Wu C R, Bovaird J A. Using graphical techniques from discriminant analysis to understand and interpret cluster solutions. Int J Data Anal Tech Strateg, 2017, 9(3): 189 doi: 10.1504/IJDATS.2017.086633
|
[27] |
張鴻雁, 杜文鋒, 武麗芬. 基于密度加權的分裂式K均值聚類算法. 計算機仿真, 2021, 38(4):254 doi: 10.3969/j.issn.1006-9348.2021.04.051
Zhang H Y, Du W F, Wu L F. Split K-menas clustering algorithm based on density weighting. Comput Simul, 2021, 38(4): 254 doi: 10.3969/j.issn.1006-9348.2021.04.051
|
[28] |
劉葉, 吳晟, 周海河, 等. 基于K-means聚類算法優化方法的研究. 信息技術, 2019, 43(1):66
Liu Y, Wu S, Zhou H H, et al. Research on optimization method based on K-means clustering algorithm. Inf Technol, 2019, 43(1): 66
|
[29] |
于祥. 基于外部驗證指標的一致性聚類算法研究[學位論文]. 南京: 南京財經大學, 2020
Yu X. Research on Consensus Clustering Algorithm Based on External Validation Measures [Dissertation]. Nanjing: Nanjing University of Finance & Economics, 2020
|
[30] |
Estivill-Castro V. Why so many clustering algorithms: A position paper. Acm Sigkdd Explor Newsl, 2002, 4(1): 65 doi: 10.1145/568574.568575
|
[31] |
郭靖, 侯蘇. K-means算法最佳聚類數評價指標研究. 軟件導刊, 2017, 16(11):5
Guo J, Hou S. Study on the index of determining the optimal clustering number of K-means algorithm. Softw Guide, 2017, 16(11): 5
|
[32] |
高新. 一種改進K-means聚類算法與新的聚類有效性指標研究[學位論文]. 合肥: 安徽大學, 2020
Gao X. Research on Improved K-Mens Algorithm and New Cluster Validity Index [Dissertation]. Hefei: Anhui University, 2020
|
[33] |
朱連江, 馬炳先, 趙學泉. 基于輪廓系數的聚類有效性分析. 計算機應用, 2010, 30(增刊2): 139
Zhu L J, Ma B X, Zhao X Q. Clustering validity analysis based on silhouette coefficient. J Comput Appl, 2010, 30(Suppl 2): 139
|
[34] |
呂正萍, 紀漢霖. 數種基于SPSS統計工具的聚類算法效率對比. 軟件導刊, 2018, 17(11):81
Lv Z P, Ji H L. Three clustering validity analysis based on SPSS. Softw Guide, 2018, 17(11): 81
|
[35] |
Liu Q, Zhang P, Cheng S S, et al. Heat transfer and thermo-elastic analysis of copper steel composite stave. Int J Heat Mass Transf, 2016, 103: 341 doi: 10.1016/j.ijheatmasstransfer.2016.05.100
|
[36] |
Zhang H, Jiao K X, Zhang J L, et al. A new method for evaluating cooling capacity of blast furnace cooling stave. Ironmak Steelmak, 2019, 46(7): 671 doi: 10.1080/03019233.2018.1454388
|