<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
MA Li, HE Cheng-mao, WEI Ze, WEI Gao-ming, WANG Yang. Effect of ionic liquid on the spontaneous combustion characteristics of noncaking pulverized coal[J]. Chinese Journal of Engineering, 2022, 44(12): 2008-2016. doi: 10.13374/j.issn2095-9389.2021.05.18.003
Citation: MA Li, HE Cheng-mao, WEI Ze, WEI Gao-ming, WANG Yang. Effect of ionic liquid on the spontaneous combustion characteristics of noncaking pulverized coal[J]. Chinese Journal of Engineering, 2022, 44(12): 2008-2016. doi: 10.13374/j.issn2095-9389.2021.05.18.003

Effect of ionic liquid on the spontaneous combustion characteristics of noncaking pulverized coal

doi: 10.13374/j.issn2095-9389.2021.05.18.003
More Information
  • Corresponding author: E-mail: mal@xust.edu.cn
  • Received Date: 2021-05-18
    Available Online: 2021-07-18
  • Publish Date: 2022-12-01
  • To study the oxidation behavior induced by the spontaneous combustion of accumulated pulverized coal during its storage and transportation within an air leakage circumstance during increased oxidation and temperature and to reveal the mechanism of [BMIM][BF4] ionic liquid inhibiting oxidation and flame retardant characteristics of pulverized coal, this paper used a high-efficiency inhibitor [BMIM][BF4] ionic liquid to inhibit the noncaking coal pulverized coal of the Hongliu coal mine (HL), measuring the critical parameters (critical spontaneous combustion temperature, Tm, and ignition delay time, ti) of pulverized coal spontaneous combustion treated using [BMIM][BF4] at 5%, 10%, and 15% mass fraction. This work also analyzed the influence of [BMIM][BF4] on the heating and self-heating of the pulverized coal. Macroscopic resistance characteristics of [BMIM][BF4] to the pulverized coal were tested under the same high-temperature circumstance (all pulverized coals were ignited). Furthermore, an Fourier transform infrared experiment was used to characterize the microscopic resistance characteristics of the pulverized coal by [BMIM][BF4] to verify the variation of the critical parameters during pulverized coal spontaneous combustion. Results show that [BMIM][BF4] can efficiently inhibit the self-heating reaction of the pulverized coal, increase the Tm and ti values of the pulverized coal, and reduce the risk of pulverized coal spontaneous combustion. Moreover, a higher [BMIM][BF4] mass fraction results in a greater critical parameter of pulverized coal spontaneous combustion. Among them, the Tm of the coal powder treated by [BMIM][BF4] at a 15% mass fraction is 156 ℃, which is +26 ℃ longer than the original pulverized coal redundancy, and the ti is 80 min, which is 32 min later than the original pulverized coal ignition. Under a similar experimental temperature, Ta (Ta>Tm), the center point temperature, oxygen consumption rate, and CO production of pulverized coal treated by [BMIM][BF4] are all lower than those of the original pulverized coal, and the inhibition effect is enhanced with the increase in the mass fraction of [BMIM][BF4]. Meanwhile, the inhibited effect of [BMIM][BF4] is reflected in the strong electronegative fluorine atoms forming strong hydrogen bonds with the hydroxyl hydrogen atoms in coal, dissolving and destroying the hydroxyl groups in the coal and blocking the coal oxygen chain reaction.

     

  • loading
  • [1]
    巢昌耀, 吳鏗, 杜瑞嶺, 等. 煤粉與半焦的混合燃燒特性及動力學分析. 工程科學學報, 2016, 38(11):1532

    Chao C Y, Wu K, Du R L, et al. Combustion characteristics and kinetic analysis of pulverized coal and semicoke. Chin J Eng, 2016, 38(11): 1532
    [2]
    劉雪嶺, 張奇. 密閉空間煤粉氣動分散湍流對爆炸參數的影響規律. 煤炭學報, 2018, 43(11):3137 doi: 10.13225/j.cnki.jccs.2018.0099

    Liu X L, Zhang Q. Influence of turbulence flow on explosion characteristics of coal dust in 20L vessel. J China Coal Soc, 2018, 43(11): 3137 doi: 10.13225/j.cnki.jccs.2018.0099
    [3]
    劉冰, 綦耀光, 張芬娜, 等. 煤層氣井射流沖煤粉裝置沖擊深度的研究. 煤炭學報, 2014, 39(4):713

    Liu B, Qi Y G, Zhang F N, et al. The impinging depth of coal particles cleanout jet device for coalbed methane well. J China Coal Soc, 2014, 39(4): 713
    [4]
    李林, 陳軍朝, 姜德義, 等. 煤自燃全過程高溫區域及指標氣體時空變化實驗研究. 煤炭學報, 2016, 41(2):444

    Li L, Chen J C, Jiang D Y, et al. Experimental study on temporal variation of high temperature region and index gas of coal spontaneous combustion. J China Coal Soc, 2016, 41(2): 444
    [5]
    European Committee for Standardization. EN15188—2007 Determination of the Spontaneous Ignition Behaviour of Dust Accumulations. Brussels: CEN-CENELEC, 2007
    [6]
    Wu D J, Norman F, Schmidt M, et al. Numerical investigation on the self-ignition behaviour of coal dust accumulations: The roles of oxygen, diluent gas and dust volume. Fuel, 2017, 188: 500 doi: 10.1016/j.fuel.2016.10.063
    [7]
    劉天奇. 不同煤質煤塵云最低著火溫度與最小著火能量試驗. 安全與環境學報, 2020, 20(4):1334

    Liu T Q. Experimental test on the minimum ignition temperature and minimum ignition energy of the coal dust cloud. J Saf Environ, 2020, 20(4): 1334
    [8]
    Wu D J, Huang X Y, Norman F, et al. Experimental investigation on the self-ignition behaviour of coal dust accumulations in oxy-fuel combustion system. Fuel, 2015, 160: 245 doi: 10.1016/j.fuel.2015.07.050
    [9]
    Ying Z, Zheng X Y, Cui G M. Pressurized oxy-fuel combustion performance of pulverized coal for CO2 capture. Appl Therm Eng, 2016, 99: 411 doi: 10.1016/j.applthermaleng.2016.01.023
    [10]
    馬礪, 李超華, 武瑞龍, 等. 最低點火溫度條件下煤粉自燃特性試驗研究. 煤炭科學技術, 2020, 48(2):110

    Ma L, Li C H, Wu R L, et al. Experimental study on spontaneous combustion characteristics of pulverized coal under minimum ignition temperature. Coal Sci Technol, 2020, 48(2): 110
    [11]
    Joshi K A, Raghavan V, Rangwala A S. An experimental study of coal dust ignition in wedge shaped hot plate configurations. Combust Flame, 2012, 159(1): 376 doi: 10.1016/j.combustflame.2011.06.003
    [12]
    Lebecki K, Dyduch Z, Fibich A, et al. Ignition of a dust layer by a constant heat flux. J Loss Prev Process Ind, 2003, 16(4): 243 doi: 10.1016/S0950-4230(03)00041-X
    [13]
    Park H, Rangwala A S, Dembsey N A. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests. J Hazard Mater, 2009, 168(1): 145 doi: 10.1016/j.jhazmat.2009.02.010
    [14]
    肖翠微. 煤粉爆炸特性與煤粉倉防爆措施研究. 煤炭科學技術, 2016, 44(8):188

    Xiao C W. Study on explosion characteristics of pulverized coal and explosion proof measures of coal bunker. Coal Sci Technol, 2016, 44(8): 188
    [15]
    宋長磊, 劉向榮, 趙順省, 等. 咪唑類離子液體中陰離子對新疆褐煤阻燃性能. 煤炭學報, 2020, 45(增刊1): 470

    Song C L, Liu X R, Zhao S S, et al. Flame retardancy of anions in imidazolium-based ionic liquids on Xinjiang lignite. J China Coal Soc, 2020, 45(Suppl 1): 470
    [16]
    Hu Z Q, Zhang S F, Lei Z P, et al. Study on the thermal extraction of Xianfeng lignite in ionic liquid 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate. J Fuel Chem Technol, 2015, 43(5): 513 doi: 10.1016/S1872-5813(15)30014-1
    [17]
    Saida S, Chakravaty S, Sahu R N, et al. Laboratory-scale tests for the utilization of high ash non-coking coal in coke-making process. Trans Indian Inst Met, 2020, 73(5): 1257 doi: 10.1007/s12666-020-01974-0
    [18]
    Wang L Y, Xu Y L, Jiang S G, et al. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Saf Sci, 2012, 50(7): 1528 doi: 10.1016/j.ssci.2012.03.006
    [19]
    仲曉星, 王德明, 尹曉丹. 基于程序升溫的煤自燃臨界溫度測試方法. 煤炭學報, 2010, 35(增刊1): 128

    Zhong X X, Wang D M, Yin X D. Test method of critical temperature of coal spontaneous combustion based on the temperature programmed experiment. J China Coal Soc, 2010, 35(Suppl 1): 128
    [20]
    徐永亮, 王蘭云, 宋志鵬, 等. 基于交叉點法的煤自燃低溫氧化階段特性和關鍵參數. 煤炭學報, 2017, 42(4):935 doi: 10.13225/j.cnki.jccs.2017.0042

    Xu Y L, Wang L Y, Song Z P, et al. Characteristics and critical parameters of coal spontaneous combustion at low temperature stage based on CPT method. J China Coal Soc, 2017, 42(4): 935 doi: 10.13225/j.cnki.jccs.2017.0042
    [21]
    Ma L, Zou L, Ren L F, et al. Prediction indices and limiting parameters of coal spontaneous combustion in the Huainan mining area in China. Fuel, 2020, 264: 116883 doi: 10.1016/j.fuel.2019.116883
    [22]
    Painter P, Pulati N, Cetiner R, et al. Dissolution and dispersion of coal in ionic liquids. Energy Fuels, 2010, 24(3): 1848 doi: 10.1021/ef9013955
    [23]
    張衛清. 咪唑類和季膦鹽類室溫離子液體影響煤氧化特性的基礎研究[學位論文]. 徐州: 中國礦業大學, 2013

    Zhang W Q. Fundamental Research on Effect of Imidazolium-based and Phosphonium-based Room Temperature Ionic Liquids on Coal Oxidation Properties [Dissertation]. Xuzhou: China University of Mining and Technology, 2013
    [24]
    李海杰, 李曉紅, 馮杰, 等. 預熱處理對褐煤熱解過程氧元素遷移的影響. 燃料化學學報, 2019, 47(1):1 doi: 10.3969/j.issn.0253-2409.2019.01.001

    Li H J, Li X H, Feng J, et al. Effect of preheating treatment on oxygen migration during lignite pyrolysis. J Fuel Chem Technol, 2019, 47(1): 1 doi: 10.3969/j.issn.0253-2409.2019.01.001
    [25]
    Cummings J, Tremain P, Shah K, et al. Modification of lignites via low temperature ionic liquid treatment. Fuel Process Technol, 2017, 155: 51 doi: 10.1016/j.fuproc.2016.02.040
    [26]
    王蘭云, 徐永亮, 姬宇鵬, 等. 含氧取代咪唑類離子液體影響煤結構及其氧化性質的實驗研究. 煤炭學報, 2012, 37(7):1190

    Wang L Y, Xu Y L, Ji Y P, et al. Effect of ionic liquids with imidazolium based cations substituted by different oxygen-containing groups on coal oxidation. J China Coal Soc, 2012, 37(7): 1190
    [27]
    Deng J, Bai Z J, Xiao Y, et al. Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids. J Therm Anal Calorim, 2018, 133(1): 453 doi: 10.1007/s10973-018-7310-z
    [28]
    趙婧昱, 張永利, 鄧軍, 等. 影響煤自燃氣體產物釋放的主要活性官能團. 工程科學學報, 2020, 42(9):1139

    Zhao J Y, Zhang Y L, Deng J, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal. Chin J Eng, 2020, 42(9): 1139
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views (516) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频