<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
HAN Xu, LI Wen-hui, LIU Jie-min, WU Chuan-dong, ZHUANG Yuan, PEI Su-yun. Controlling techniques and characteristics of organophosphate esters in building environment: A review[J]. Chinese Journal of Engineering, 2022, 44(2): 305-318. doi: 10.13374/j.issn2095-9389.2021.05.11.001
Citation: HAN Xu, LI Wen-hui, LIU Jie-min, WU Chuan-dong, ZHUANG Yuan, PEI Su-yun. Controlling techniques and characteristics of organophosphate esters in building environment: A review[J]. Chinese Journal of Engineering, 2022, 44(2): 305-318. doi: 10.13374/j.issn2095-9389.2021.05.11.001

Controlling techniques and characteristics of organophosphate esters in building environment: A review

doi: 10.13374/j.issn2095-9389.2021.05.11.001
More Information
  • Corresponding author: LI Wen-hui, E-mail: liwh@ustb.edu.cn; LIU Jie-min, E-mail: liujm@ustb.edu.cn
  • Received Date: 2021-05-11
    Available Online: 2021-07-06
  • Publish Date: 2022-02-15
  • Organophosphate esters (OPEs) are widely used as flame retardants, plasticizers, stabilizers, and antifoaming agents in various building materials, such as plastics, foam, coatings, textiles and furniture, and interior decoration materials. In general, most OPEs are combined physically rather than chemically during production. This makes these chemical compounds to be easily released in an indoor environment. Also, previous studies have shown that OPEs were commonly found in an indoor environment at elevated concentrations. Long-term exposure to high concentrations of OPEs in an indoor environment might result in certain health risks. However, there is limited information on the distribution characteristics and risk assessment of OPEs in the building environment. In this study, we discussed the properties, applications, and biological toxicity of common OPEs. In addition, we reviewed the environmental behavior, pollution characteristics, and exposure level of OPEs in the building environment. Building materials and household products are important sources of OPEs in an indoor environment. The levels of OPEs in these productions were significantly associated with the concentration of OPEs in indoor air and dust. In general, indoor air and dust are regarded as the two major sinks of OPEs in the building environment. However, more volatile OPEs, such as TCIPP, TCEP, and TnBP were found predominantly in indoor air, while less volatile OPEs, such as TDCIPP and TPhP were often detected in dust due to their low vapor pressure and high affinity for particles. In general, humans can be exposed to OPEs in a building environment through three main routes of exposure: inhalation, dermal absorption, and ingestion. This study revealed that dust ingestion is the dominant route of human exposure to OPEs, while dermal absorption and inhalation were minor contributors to the total daily exposures. In addition, the relative mass transfer model and release characteristics of OPEs in the building environment were also introduced in this study. Based on the characteristics of OPEs in the building environment, the controlling techniques, which include microporous control technology, barrier control technology, compound purification technology, and an alternative strategy of OPEs, were introduced. However, prospects for future research were considered.

     

  • loading
  • [1]
    Veen I, Boer J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 2012, 88(10): 1119 doi: 10.1016/j.chemosphere.2012.03.067
    [2]
    Peng F J, Hardy E M, Béranger R, et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France. Environ Pollut, 2020, 267: 115425 doi: 10.1016/j.envpol.2020.115425
    [3]
    Xing L Q, Tao M, Zhang Q, et al. Occurrence, spatial distribution and risk assessment of organophosphate esters in surface water from the Lower Yangtze River Basin. Sci Total Environ, 2020, 734: 139380 doi: 10.1016/j.scitotenv.2020.139380
    [4]
    Yadav I C, Devi N L, Zhong G C, et al. Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. Environ Pollut, 2017, 229: 668 doi: 10.1016/j.envpol.2017.06.089
    [5]
    Abdollahi A, Eng A, Jantunen L M, et al. Characterization of polyurethane foam (PUF) and sorbent impregnated PUF (SIP) disk passive air samplers for measuring organophosphate flame retardants. Chemosphere, 2017, 167: 212 doi: 10.1016/j.chemosphere.2016.09.111
    [6]
    Gao X Z, Lin Y Y, Li J Y, et al. Spatial pattern analysis reveals multiple sources of organophosphorus flame retardants in coastal waters. J Hazard Mater, 2021, 417: 125882 doi: 10.1016/j.jhazmat.2021.125882
    [7]
    Saeger V W, Hicks O, Kaley R G, et al. Environmental fate of selected phosphate esters. Environ Sci Technol, 1979, 13(7): 840 doi: 10.1021/es60155a010
    [8]
    Kim J W, Isobe T, Chang K H, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ Pollut, 2011, 159(12): 3653 doi: 10.1016/j.envpol.2011.07.020
    [9]
    Wang Y, Li W H, Martínez-Moral M P, et al. Metabolites of organophosphate esters in urine from the United States: Concentrations, temporal variability, and exposure assessment. Environ Int, 2019, 122: 213 doi: 10.1016/j.envint.2018.11.007
    [10]
    Shen J Y, Zhang Y Y, Yu N Y, et al. Organophosphate ester, 2-ethylhexyl diphenyl phosphate (EHDPP), elicits cytotoxic and transcriptomic effects in chicken embryonic hepatocytes and its biotransformation profile compared to humans. Environ Sci Technol, 2019, 53(4): 2151 doi: 10.1021/acs.est.8b06246
    [11]
    Li J, Giesy J P, Yu L Q, et al. Effects of tris(1, 3-dichloro-2-propyl) phosphate (TDCPP) in tetrahymena thermophila: Targeting the ribosome. Sci Rep, 2015, 5: 10562 doi: 10.1038/srep10562
    [12]
    Liu Y H, Li Y, Dong S S, et al. The risk and impact of organophosphate esters on the development of female-specific cancers: Comparative analysis of patients with benign and malignant tumors. J Hazard Mater, 2021, 404: 124020 doi: 10.1016/j.jhazmat.2020.124020
    [13]
    Yang Y, Xiao Y, Chang Y Q, et al. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. Ecotoxicol Environ Saf, 2018, 158: 78 doi: 10.1016/j.ecoenv.2018.04.012
    [14]
    Persson J, Wang T, Hagberg J. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools. Sci Total Environ, 2018, 628-629: 159 doi: 10.1016/j.scitotenv.2018.02.053
    [15]
    Yin H L, Wu D, You J J, et al. Occurrence, distribution, and exposure risk of organophosphate esters in street dust from Chengdu, China. Arch Environ Contam Toxicol, 2019, 76(4): 617 doi: 10.1007/s00244-019-00602-3
    [16]
    Yang Y, Chen P, Ma S T, et al. A critical review of human internal exposure and the health risks of organophosphate ester flame retardants and their metabolites. Crit Rev Environ Sci Technol, 2020: 1
    [17]
    Du Z K, Wang G W, Gao S X, et al. Aryl organophosphate flame retardants induced cardiotoxicity during zebrafish embryogenesis: By disturbing expression of the transcriptional regulators. Aquat Toxicol, 2015, 161: 25 doi: 10.1016/j.aquatox.2015.01.027
    [18]
    Yang W Q, Zhao F, Fang Y J, et al. 1H-nuclear magnetic resonance metabolomics revealing the intrinsic relationships between neurochemical alterations and neurobehavioral and neuropathological abnormalities in rats exposed to tris(2-chloroethyl)phosphate. Chemosphere, 2018, 200: 649 doi: 10.1016/j.chemosphere.2018.02.056
    [19]
    Chen G L, Jin Y X, Wu Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environ Toxicol Pharmacol, 2015, 40(1): 310 doi: 10.1016/j.etap.2015.06.021
    [20]
    Liu X S, Ji K, Choi K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquat Toxicol, 2012, 114-115: 173 doi: 10.1016/j.aquatox.2012.02.019
    [21]
    Eede N, Erratico C, Exarchou V, et al. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum. Toxicol Appl Pharmacol, 2015, 284(2): 246 doi: 10.1016/j.taap.2015.01.021
    [22]
    Brandsma S H, Leonards P E G, Leslie H A, et al. Tracing organophosphorus and brominated flame retardants and plasticizers in an estuarine food web. Sci Total Environ, 2015, 505: 22 doi: 10.1016/j.scitotenv.2014.08.072
    [23]
    Katsoyiannis A, Cincinelli A. ‘Cocktails and dreams’: The indoor air quality that people are exposed to while sleeping. Curr Opin Environ Sci Heal, 2019, 8: 6 doi: 10.1016/j.coesh.2018.12.005
    [24]
    Liagkouridis I, Cousins A P, Cousins I T. Physical-chemical properties and evaluative fate modelling of ‘emerging’ and ‘novel’ brominated and organophosphorus flame retardants in the indoor and outdoor environment. Sci Total Environ, 2015, 524-525: 416 doi: 10.1016/j.scitotenv.2015.02.106
    [25]
    Li T Y, Bao L J, Wu C C, et al. Organophosphate flame retardants emitted from thermal treatment and open burning of e-waste. J Hazard Mater, 2019, 367: 390 doi: 10.1016/j.jhazmat.2018.12.041
    [26]
    Kim J W, Isobe T, Muto M, et al. Organophosphorus flame retardants (PFRs) in human breast milk from several Asian countries. Chemosphere, 2014, 116: 91 doi: 10.1016/j.chemosphere.2014.02.033
    [27]
    Chen Y X, Liu Q Y, Ma J, et al. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure. Chemosphere, 2020, 260: 127633 doi: 10.1016/j.chemosphere.2020.127633
    [28]
    He C T, Zheng J, Qiao L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of Southern China and implications for human exposure. Chemosphere, 2015, 133: 47 doi: 10.1016/j.chemosphere.2015.03.043
    [29]
    Kademoglou K, Xu F C, Padilla-Sanchez J A, et al. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion. Environ Int, 2017, 102: 48 doi: 10.1016/j.envint.2016.12.012
    [30]
    Hamnett C. Urban housing in contemporary China: A commentary. Cities, 2021, 108: 102968 doi: 10.1016/j.cities.2020.102968
    [31]
    Zheng X B, Xu F C, Chen K H, et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: Composition variations and implications for human exposure. Environ Int, 2015, 78: 1 doi: 10.1016/j.envint.2015.02.006
    [32]
    Wu M, Yu G, Cao Z G, et al. Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. Chemosphere, 2016, 150: 465 doi: 10.1016/j.chemosphere.2015.12.111
    [33]
    Cao Z G, Xu F C, Covaci A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environ Sci Technol, 2014, 48(15): 8839 doi: 10.1021/es501224b
    [34]
    Bergh C, Torgrip R, Emenius G, et al. Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study. Indoor Air, 2011, 21(1): 67 doi: 10.1111/j.1600-0668.2010.00684.x
    [35]
    Ali N, van den Eede N, Dirtu A C, et al. Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan. Indoor Air, 2012, 22(3): 200 doi: 10.1111/j.1600-0668.2011.00757.x
    [36]
    Kim J W, Isobe T, Sudaryanto A, et al. Organophosphorus flame retardants in house dust from the Philippines: Occurrence and assessment of human exposure. Environ Sci Pollut Res, 2013, 20(2): 812 doi: 10.1007/s11356-012-1237-x
    [37]
    Brommer S, Harrad S, van den Eede N, et al. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J Environ Monit, 2012, 14(9): 2482 doi: 10.1039/c2em30303e
    [38]
    Kim U J, Wang Y, Li W H, et al. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States. Environ Int, 2019, 125: 342 doi: 10.1016/j.envint.2019.01.065
    [39]
    Li W H, Wang Y, Asimakopoulos A G, et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure. Environ Int, 2019, 133: 105178 doi: 10.1016/j.envint.2019.105178
    [40]
    Voliotis A, Bezantakos S, Besis A, et al. Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations. Int J Hyg Environ Heal, 2021, 234: 113710 doi: 10.1016/j.ijheh.2021.113710
    [41]
    Wang Y, Yang Y, Zhang Y W, et al. Polyurethane heat preservation materials: The significant sources of organophosphorus flame retardants. Chemosphere, 2019, 227: 409 doi: 10.1016/j.chemosphere.2019.04.085
    [42]
    Karlsson M, Julander A, Bavel B, et al. Levels of brominated flame retardants in blood in relation to levels in household air and dust. Environ Int, 2007, 33(1): 62 doi: 10.1016/j.envint.2006.06.025
    [43]
    Vykoukalová M, Venier M, Vojta ?, et al. Organophosphate esters flame retardants in the indoor environment. Environ Int, 2017, 106: 97 doi: 10.1016/j.envint.2017.05.020
    [44]
    Cao D D, Lv K, Gao W, et al. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China. Ecotoxicol Environ Saf, 2019, 169: 383 doi: 10.1016/j.ecoenv.2018.11.038
    [45]
    Marklund A, Andersson B, Haglund P. Organophosphorus flame retardants and plasticizers in air from various indoor environments. J Environ Monit, 2005, 7(8): 814 doi: 10.1039/b505587c
    [46]
    Zhou L L, Hiltscher M, Gruber D, et al. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments. Environ Sci Pollut Res, 2017, 24(12): 10992 doi: 10.1007/s11356-016-6902-z
    [47]
    Tang Z W, Huang Q F, Cheng J L, et al. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: A neglected heavily polluted area. Environ Sci Technol, 2014, 48(3): 1508 doi: 10.1021/es404905u
    [48]
    Kajiwara N, Noma Y, Takigami H. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008. J Hazard Mater, 2011, 192(3): 1250 doi: 10.1016/j.jhazmat.2011.06.043
    [49]
    Muenhor D, Harrad S. Within-room and within-building temporal and spatial variations in concentrations of polybrominated diphenyl ethers (PBDEs) in indoor dust. Environ Int, 2012, 47: 23 doi: 10.1016/j.envint.2012.06.001
    [50]
    Ingerowski G, Friedle A, THUMULLA3 J. Chlorinated ethyl and isopropyl phosphoric acid triesters in the indoor environment - an inter-laboratory exposure study. Indoor Air, 2001, 11(3): 145 doi: 10.1034/j.1600-0668.2001.011003145.x
    [51]
    Wang Y, Hou M M, Zhang Q N, et al. Organophosphorus flame retardants and plasticizers in building and decoration materials and their potential burdens in newly decorated houses in China. Environ Sci Technol, 2017, 51(19): 10991 doi: 10.1021/acs.est.7b03367
    [52]
    王成云, 李麗霞, 謝堂堂, 等. 超聲萃取/氣相色譜-串聯質譜法同時測定紡織品中6種禁用有機磷阻燃劑. 分析測試學報, 2011, 30(8):917 doi: 10.3969/j.issn.1004-4957.2011.08.017

    Wang C Y, Li L X, Xie T T, et al. Simultaneous determination of six kinds of banned organophosphorous flame retardants in textiles by gas chromatography tandem mass spectrometry combined with ultrasonic extraction. J Instrum Anal, 2011, 30(8): 917 doi: 10.3969/j.issn.1004-4957.2011.08.017
    [53]
    Stapleton H M, Sharma S, Getzinger G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out. Environ Sci Technol, 2012, 46(24): 13432 doi: 10.1021/es303471d
    [54]
    Hammel S C, Hoffman K, Lorenzo A M, et al. Associations between flame retardant applications in furniture foam, house dust levels, and residents’ serum levels. Environ Int, 2017, 107: 181 doi: 10.1016/j.envint.2017.07.015
    [55]
    Tichenor B A, Guo Z, Dunn J E, et al. The interaction of vapour phase organic compounds with indoor sinks. Indoor Air, 2010, 1(1): 23
    [56]
    Xiong J Y, Cao J P, Zhang Y P. Early stage C-history method: Rapid and accurate determination of the key SVOC emission or sorption parameters of indoor materials. Build Environ, 2016, 95: 314 doi: 10.1016/j.buildenv.2015.09.027
    [57]
    Xu Y, Little J C. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles. Environ Sci Technol, 2006, 40(2): 456 doi: 10.1021/es051517j
    [58]
    Cao J P, Weschler C J, Luo J J, et al. Cm-history method, a novel approach to simultaneously measure source and sink parameters important for estimating indoor exposures to phthalates. Environ Sci Technol, 2016, 50(2): 825
    [59]
    賈祺, 關紅艷, 郭中寶, 等. 美縫劑TVOC釋放量與釋放規律的測試與分析. 環境化學, 2021, 40(2):665

    Jia Q, Guan H Y, Guo Z B, et al. Measurement and analysis of TVOC emission and rules in reaction resin grout. Environ Chem, 2021, 40(2): 665
    [60]
    Yang F X, Ding J J, Huang W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter. Environ Sci Technol, 2014, 48(1): 63 doi: 10.1021/es403186z
    [61]
    Marklund A, Andersson B, Haglund P. Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants. Environ Sci Technol, 2005, 39(19): 7423 doi: 10.1021/es051013l
    [62]
    Abdallah M A E, Covaci A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure. Environ Sci Technol, 2014, 48(9): 4782 doi: 10.1021/es501078s
    [63]
    Cequier E, Ionas A C, Covaci A, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environ Sci Technol, 2014, 48(12): 6827 doi: 10.1021/es500516u
    [64]
    Du J, Li H X, Xu S D, et al. A review of organophosphorus flame retardants (OPFRs): Occurrence, bioaccumulation, toxicity, and organism exposure. Environ Sci Pollut Res, 2019, 26(22): 22126 doi: 10.1007/s11356-019-05669-y
    [65]
    M?kinen M S, M?kinen M R, Koistinen J T, et al. Respiratory and dermal exposure to organophosphorus flame retardants and tetrabromobisphenol A at five work environments. Environ Sci Technol, 2009, 43(3): 941 doi: 10.1021/es802593t
    [66]
    Lee H K, Kang H, Lee S, et al. Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs. Sci Total Environ, 2020, 719: 137386 doi: 10.1016/j.scitotenv.2020.137386
    [67]
    Shoeib T, Webster G M, Hassan Y, et al. Organophosphate esters in house dust: A comparative study between Canada, Turkey and Egypt. Sci Total Environ, 2019, 650: 193 doi: 10.1016/j.scitotenv.2018.08.407
    [68]
    Abou-Elwafa Abdallah M, Pawar G, Harrad S. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure. Toxicol Appl Pharmacol, 2016, 291: 28 doi: 10.1016/j.taap.2015.12.004
    [69]
    Brommer S, Harrad S. Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices. Environ Int, 2015, 83: 202 doi: 10.1016/j.envint.2015.07.002
    [70]
    Xu F C, Giovanoulis G, van Waes S, et al. Comprehensive study of human external exposure to organophosphate flame retardants via air, dust, and hand wipes: The importance of sampling and assessment strategy. Environ Sci Technol, 2016, 50(14): 7752 doi: 10.1021/acs.est.6b00246
    [71]
    Poma G, Sales C, Bruyland B, et al. Occurrence of organophosphorus flame retardants and plasticizers (PFRs) in Belgian foodstuffs and estimation of the dietary exposure of the adult population. Environ Sci Technol, 2018, 52(4): 2331 doi: 10.1021/acs.est.7b06395
    [72]
    Sundkvist A M, Olofsson U, Haglund P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J Environ Monit, 2010, 12(4): 943 doi: 10.1039/b921910b
    [73]
    Rosenfeld P E, Feng L. Risks of Hazardous Wastes. Oxford: William Andrew, 2011
    [74]
    Liang K, Shi F Q, Liu J F. Occurrence and distribution of oligomeric organophosphorus flame retardants in different treatment stages of a sewage treatment plant. Environ Pollut, 2018, 232: 229 doi: 10.1016/j.envpol.2017.09.036
    [75]
    Yang Y, Ji T, Su W Y, et al. Photocatalytic NOx abatement and self-cleaning performance of cementitious composites with g-C3N4 nanosheets under visible light. Constr Build Mater, 2019, 225: 120 doi: 10.1016/j.conbuildmat.2019.07.189
    [76]
    Yang Z W, Xiao G Q, Chen C L, et al. Synergistic decoration of organic titanium and polydopamine on boron nitride to enhance fire resistance of intumescent waterborne epoxy coating. Colloids Surf A:Physicochem Eng Aspects, 2021, 621: 126561 doi: 10.1016/j.colsurfa.2021.126561
    [77]
    趙嘉亮, 羅旭東, 陳俊紅, 等. 納米技術在鎂質耐火材料中應用的研究進展. 工程科學學報, 2021, 43(1):76

    Zhao J L, Luo X D, Chen J H, et al. Progress in the application of nanotechnology to magnesia refractories. Chin J Eng, 2021, 43(1): 76
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Tables(4)

    Article views (1025) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频