Citation: | DING Long, YANG Tao, QIAN Li-xin, ZHANG Hong-liang, WEI Jin-chao, YANG Ben-tao, LONG Hong-ming. Effect of potassium compounds in sintering flue gas on the removal of NO and dioxin performance over V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2022, 44(12): 2189-2199. doi: 10.13374/j.issn2095-9389.2021.05.07.005 |
[1] |
于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
|
[2] |
Li X, Bei N F, Hu B, et al. Mitigating NOX emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei, China. Environ Pollut, 2021, 279: 116931 doi: 10.1016/j.envpol.2021.116931
|
[3] |
邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1
|
[4] |
Li S M, Liu G R, Zheng M H, et al. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes. J Hazard Mater, 2017, 331: 63 doi: 10.1016/j.jhazmat.2017.02.027
|
[5] |
Qian L X, Chun T J, Long H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf Environ Prot, 2018, 117: 82 doi: 10.1016/j.psep.2018.04.014
|
[6] |
周茂軍, 張代華. 寶鋼燒結煙氣超低排放技術集成與實踐. 鋼鐵, 2020, 55(2):144 doi: 10.13228/j.boyuan.issn0449-749x.20190298
Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144 doi: 10.13228/j.boyuan.issn0449-749x.20190298
|
[7] |
張玉華, 束航, 范紅梅, 等. 商業V2O5?WO3/TiO2催化劑SCR脫硝過程中PM2.5的排放特性及影響因素研究. 中國電機工程學報, 2015, 35(2):383
Zhang Y H, Shu H, Fan H M, et al. Research on emission characteristics and influencing factors of PM2.5 for selective catalytic reduction based on V2O5?WO3/TiO2 commercial catalysts. Proc CSEE, 2015, 35(2): 383
|
[8] |
Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958
|
[9] |
He Y Y, Ford M E, Zhu M H, et al. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl Catal B:Environ, 2016, 193: 141 doi: 10.1016/j.apcatb.2016.04.022
|
[10] |
趙利明, 陳海波. SCR煙氣脫硝技術在寶鋼股份4#燒結機的應用. 燒結球團, 2018, 43(6):24
Zhao L M, Chen H B. Application of SCR flue gas denitrification technology in No. 4 sinter machine of Baosteel Co. , Ltd. Sinter Pelletizing, 2018, 43(6): 24
|
[11] |
Marberger A, Ferri D, Elsener M, et al. The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts. Angewandte Chemie Int Ed, 2016, 55(39): 11989 doi: 10.1002/anie.201605397
|
[12] |
李想, 李俊華, 何煦, 等. 煙氣脫硝催化劑中毒機制與再生技術. 化工進展, 2015, 34(12):4129 doi: 10.16085/j.issn.1000-6613.2015.12.001
Li X, Li J H, He X, et al. Poisoning mechanism and regeneration process of the denitration catalyst. Chem Ind Eng Prog, 2015, 34(12): 4129 doi: 10.16085/j.issn.1000-6613.2015.12.001
|
[13] |
云端, 宋薔, 姚強. V2O5-WO3/TiO2 SCR催化劑的失活機理及分析. 煤炭轉化, 2009, 32(1):91 doi: 10.3969/j.issn.1004-4248.2009.01.020
Yun D, Song Q, Yao Q. Mechanism and analysis of scr catalyst deactivation. Coal Convers, 2009, 32(1): 91 doi: 10.3969/j.issn.1004-4248.2009.01.020
|
[14] |
錢立新, 丁龍, 龍紅明, 等. 堿中毒對燒結煙氣SCR催化劑脫硝脫二噁英的影響. 鋼鐵研究學報, 2020, 32(7):542 doi: 10.13228/j.boyuan.issn1001-0963.20200070
Qian L X, Ding L, Long H M, et al. Effect of alkali poisoning on simultaneous removal NO and dioxins over SCR catalysts for sintering flue gas. J Iron Steel Res, 2020, 32(7): 542 doi: 10.13228/j.boyuan.issn1001-0963.20200070
|
[15] |
Li X, Li X S, Yang R T, et al. The poisoning effects of calcium on V2O5?WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium. Mol Catal, 2017, 434: 16 doi: 10.1016/j.mcat.2017.01.010
|
[16] |
丁健, 劉清才, 孔明, 等. 燃煤煙氣中砷對V2O5?WO3/TiO2 SCR脫硝催化劑性能的影響. 燃料化學學報, 2016, 44(4):495 doi: 10.3969/j.issn.0253-2409.2016.04.016
Ding J, Liu Q C, Kong M, et al. Influence of arsenic in flue gas on the performance of V2O5?WO3/TiO2 catalyst in selective catalytic reduction of NOx. J Fuel Chem Technol, 2016, 44(4): 495 doi: 10.3969/j.issn.0253-2409.2016.04.016
|
[17] |
戴澤軍, 王樂樂, 唐浩, 等. 廢棄釩鈦系選擇性催化還原催化劑重金屬浸出特性. 化工進展, 2018, 37(10):3873 doi: 10.16085/j.issn.1000-6613.2017-2269
Dai Z J, Wang L L, Tang H, et al. Leaching characteristics of the heavy metals in spent vanadium and titanium SCR catalyst. Chem Ind Eng Prog, 2018, 37(10): 3873 doi: 10.16085/j.issn.1000-6613.2017-2269
|
[18] |
Kong M, Liu Q C, Zhou J, et al. Effect of different potassium species on the deactivation of V2O5–WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637 doi: 10.1016/j.cej.2018.05.045
|
[19] |
彭犇, 張業玲, 岳昌盛, 等. 燒結除塵灰回用對燒結細顆粒排放的影響. 環境工程, 2018, 36(12):151 doi: 10.13205/j.hjgc.201812030
Peng B, Zhang Y L, Yue C S, et al. Effects of recycling of sintering dust on emission of sintered fine particles. Environ Eng, 2018, 36(12): 151 doi: 10.13205/j.hjgc.201812030
|
[20] |
錢峰, 于淑娟, 侯洪宇, 等. 燒結機頭電除塵灰資源化再利用. 鋼鐵, 2015, 50(12):67 doi: 10.13228/j.boyuan.issn0449-749x.20150262
Qian F, Yu S J, Hou H Y, et al. Recycling of the electric dust in sintering machine head. Iron Steel, 2015, 50(12): 67 doi: 10.13228/j.boyuan.issn0449-749x.20150262
|
[21] |
Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5?WO3/TiO2 catalyst: The effect of heavy metal Pb. J Hazard Mater, 2020, 387: 121705 doi: 10.1016/j.jhazmat.2019.121705
|
[22] |
Yan M, Li X D, Chen T, et al. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs. J Environ Sci, 2010, 22(10): 1637 doi: 10.1016/S1001-0742(09)60300-4
|
[23] |
Shi Q, Long H M, Chun T J, et al. Catalytic combustion of chlorobenzene with VOx/CeO2 catalysts: Influence of catalyst synthesis method. Int J Chem React Eng, 2019, 17(12): 20190084
|
[24] |
Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts. J Catal, 1995, 155(1): 117 doi: 10.1006/jcat.1995.1193
|
[25] |
Li S C, Huang W J, Xu H M, et al. Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. Appl Catal B:Environ, 2020, 270: 118872 doi: 10.1016/j.apcatb.2020.118872
|
[26] |
Jung S M, Grange P. Characterization and reactivity of pure TiO2-SO42? SCR catalyst: Influence of SO42? content. Catal Today, 2000, 59(3-4): 305 doi: 10.1016/S0920-5861(00)00296-0
|
[27] |
Zhang X J, Wang J K, Song Z X, et al. Promotion of surface acidity and surface species of doped Fe and SO42? over CeO2 catalytic for NH3-SCR reaction. Mol Catal, 2019, 463: 1 doi: 10.1016/j.mcat.2018.11.002
|
[28] |
Jiang Y, Gao X, Zhang Y X, et al. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts. J Hazard Mater, 2014, 274: 270 doi: 10.1016/j.jhazmat.2014.04.026
|
[29] |
Tops?e N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217 doi: 10.1126/science.265.5176.1217
|
[30] |
Odenbrand C U I. CaSO4 deactivated V2O5–WO3/TiO2 SCR catalyst for a diesel power plant. Characterization and simulation of the kinetics of the SCR reactions. Appl Catal B:Environ, 2018, 234: 365
|
[31] |
Gu T T, Liu Y, Weng X L, et al. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal Commun, 2010, 12(4): 310 doi: 10.1016/j.catcom.2010.10.003
|
[32] |
Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal Today, 1996, 28(4): 373 doi: 10.1016/S0920-5861(96)00050-8
|
[33] |
Kong M, Liu Q C, Zhu B H, et al. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts. Chem Eng J, 2015, 264: 815 doi: 10.1016/j.cej.2014.12.038
|