<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
QIN Bo-nan, YANG Jue, LUO Wei-dong, ZHANG Wen-ming. Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension[J]. Chinese Journal of Engineering, 2022, 44(12): 2154-2163. doi: 10.13374/j.issn2095-9389.2021.04.25.002
Citation: QIN Bo-nan, YANG Jue, LUO Wei-dong, ZHANG Wen-ming. Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension[J]. Chinese Journal of Engineering, 2022, 44(12): 2154-2163. doi: 10.13374/j.issn2095-9389.2021.04.25.002

Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension

doi: 10.13374/j.issn2095-9389.2021.04.25.002
More Information
  • Corresponding author: E-mail: yangjue@ustb.edu.cn
  • Received Date: 2021-04-25
    Available Online: 2021-05-28
  • Publish Date: 2022-12-01
  • The vehicle suspension system is not only used to consume the vibration energy transmitted from the ground to the vehicle body but also provides good handling stability for the vehicle. This can be a challenging tradeoff, especially for vehicles with a high center of gravity and heavy loads, such as trucks and SUVs. These vehicles are prone to large load deviations during emergency steering, causing the vehicle to roll over. The emergence of a hydraulically-interconnected suspension (HIS) could effectively maintain the vehicle body’s stability. As a unique hydropneumatic suspension, the HIS system has prominent nonlinear damping characteristics and can decouple the bounce motion and roll motion of the vehicle. This increases the vehicle’s roll stiffness without affecting the vertical rigidity of the vehicle, thereby substantially reducing the possibility of rollover accidents. This paper introduces a novel energy-harvesting hydraulically-interconnected suspension (EH-HIS), which has the dynamic characteristics of the HIS and can even harvest the vibration energy that is traditionally dissipated into heat using the oil shock absorbers. Working principles of bounce motion, roll motion, and pitch motion of the EH-HIS system have been analyzed. A mathematical model of the system was established based on the pressure drop principle and validated by a bench test. Damping characteristics and the energy harvesting capability are studied via simulations. Results show that the EH-HIS has considerable asymmetric and tunable damping characteristics that can meet the allowable range of most passenger vehicles. When the external resistance increases from 5 to 25 $ \mathrm{\Omega } $, the corresponding equivalent damping coefficient decreases from 7558 to 3134 N?s·m?1. The energy harvesting capability analysis shows that maximum energy harvesting power is achieved when the external resistance is equal to the internal resistance. Furthermore, the average harvesting power can reach 875.9 W under the excitation of 2 Hz (frequency) 30 mm (amplitude).

     

  • loading
  • [1]
    涂俊敏. 機械式消扭懸架系統應用效果的仿真分析[學位論文]. 長春: 吉林大學, 2007

    Tu J M. Simulation and Analysis of the Application Effect of Mechanical Elimination Torsion Suspension [Dissertation]. Changchun: Jilin University, 2007
    [2]
    李仲興, 崔振, 徐興, 等. 互聯式空氣懸架動態特性試驗研究. 科學技術與工程, 2014, 14(14):82 doi: 10.3969/j.issn.1671-1815.2014.14.016

    Li Z X, Cui Z, Xu X, et al. Experimental study on the dynamic performance of pneumatically interlinked air suspension. Sci Technol Eng, 2014, 14(14): 82 doi: 10.3969/j.issn.1671-1815.2014.14.016
    [3]
    張云, 周孔亢, 錢寬. 互聯空氣懸架對整車振動性能的影響. 江蘇大學學報(自然科學版), 2017, 38(4):410

    Zhang Y, Zhou K K, Qian K. Influence of interconnected air suspension on vehicle vibration performance. J Jiangsu Univ Nat Sci Ed, 2017, 38(4): 410
    [4]
    Dou G W, Yu W H, Li Z X, et al. Sliding mode control of laterally interconnected air suspensions. Appl Sci, 2020, 10(12): 4320 doi: 10.3390/app10124320
    [5]
    Chen Y, Hou Y B, Peterson A, et al. Failure mode and effects analysis of dual levelling valve airspring suspensions on truck dynamics. Veh Syst Dyn, 2019, 57(4): 617 doi: 10.1080/00423114.2018.1480787
    [6]
    Chen Y, Peterson A W, Ahmadian M. Achieving anti-roll bar effect through air management in commercial vehicle pneumatic suspensions. Veh Syst Dyn, 2019, 57(12): 1775 doi: 10.1080/00423114.2018.1552005
    [7]
    Smith W A, Zhang N, Hu W. Hydraulically interconnected vehicle suspension: Handling performance. Veh Syst Dyn, 2011, 49(1-2): 87 doi: 10.1080/00423111003596743
    [8]
    Smith W A, Zhang N. Recent developments in passive interconnected vehicle suspension. Front Mech Eng China, 2010, 5(1): 1 doi: 10.1007/s11465-009-0092-z
    [9]
    Yao Q L, Zhang X J, Guo K H, et al. Study on a novel dual-mode interconnected suspension. Int J Veh Des, 2015, 68(1-3): 81
    [10]
    丁飛, 張農, 韓旭. 安裝液壓互聯懸架貨車的機械液壓多體系統建模及模態分析. 機械工程學報, 2012, 48(6):116 doi: 10.3901/JME.2012.06.116

    Ding F, Zhang N, Han X. Modeling and modal analysis of multi-body truck system fitted with hydraulically interconnected suspension. J Mech Eng, 2012, 48(6): 116 doi: 10.3901/JME.2012.06.116
    [11]
    周敏, 章杰, 鄭敏毅, 等. 裝有液壓互聯懸架車輛的越野性能仿真與試驗研究. 汽車工程, 2017, 39(4):447 doi: 10.19562/j.chinasae.qcgc.2017.04.013

    Zhou M, Zhang J, Zheng M Y, et al. Simulation and experimental study on the off-road performance of vehicle with hydraulically interconnected suspension. Automot Eng, 2017, 39(4): 447 doi: 10.19562/j.chinasae.qcgc.2017.04.013
    [12]
    Zhang Y X, Guo K H, Wang D, et al. Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy, 2017, 119: 961 doi: 10.1016/j.energy.2016.11.045
    [13]
    Abdelkareem M A A, Xu L, Ali M K A, et al. Vibration energy harvesting in automotive suspension system: A detailed review. Appl Energy, 2018, 229: 672 doi: 10.1016/j.apenergy.2018.08.030
    [14]
    Li Z J, Zuo L, Luhrs G, et al. Electromagnetic energy-harvesting shock absorbers: Design, modeling, and road tests. IEEE Trans Veh Technol, 2013, 62(3): 1065 doi: 10.1109/TVT.2012.2229308
    [15]
    Li Z J, Zuo L, Kuang J, et al. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater Struct, 2013, 22(2): 025008 doi: 10.1088/0964-1726/22/2/025008
    [16]
    Liu Y L, Xu L, Zuo L. Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE/ASME Trans Mechatron, 2017, 22(5): 1933 doi: 10.1109/TMECH.2017.2700485
    [17]
    Xiong Q C, Qin B N, Li X F, et al. A rule-based damping control of MMR-based energy-harvesting vehicle suspension // 2020 American Control Conference (ACC). Denver, 2020: 2262
    [18]
    Zhang Y X, Zhang X J, Zhan M, et al. Study on a novel hydraulic pumping regenerative suspension for vehicles. J Frankl Inst, 2015, 352(2): 485 doi: 10.1016/j.jfranklin.2014.06.005
    [19]
    Zhang Y X, Chen H, Guo K H, et al. Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation. Appl Energy, 2017, 199: 1 doi: 10.1016/j.apenergy.2017.04.085
    [20]
    Guo S J, Xu L, Liu Y L, et al. Modeling and experiments of a hydraulic electromagnetic energy-harvesting shock absorber. IEEE/ASME Trans Mechatron, 2017, 22(6): 2684 doi: 10.1109/TMECH.2017.2760341
    [21]
    方志剛, 過學迅, 左磊, 等. 液電饋能式減振器阻尼特性理論及試驗. 吉林大學學報(工學版), 2014, 44(4):939 doi: 10.13229/j.cnki.jdxbgxb201404007

    Fang Z G, Guo X X, Zuo L, et al. Theory and experiment of damping characteristics of hydraulic electromagnetic energy-regenerative shock absorber. J Jilin Univ Eng Technol Ed, 2014, 44(4): 939 doi: 10.13229/j.cnki.jdxbgxb201404007
    [22]
    陳龍, 張承龍, 汪若塵, 等. 液壓互聯式饋能懸架建模與優化設計. 農業機械學報, 2017, 48(1):303 doi: 10.6041/j.issn.1000-1298.2017.01.040

    Chen L, Zhang C L, Wang R C, et al. Modeling and optimization design of hydraulically interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(1): 303 doi: 10.6041/j.issn.1000-1298.2017.01.040
    [23]
    汪若塵, 蔣秋明, 葉青, 等. 液壓互聯饋能懸架特性分析與試驗. 農業機械學報, 2017, 48(8):350 doi: 10.6041/j.issn.1000-1298.2017.08.042

    Wang R C, Jiang Q M, Ye Q, et al. Characteristics analysis and experiment of hydraulic interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(8): 350 doi: 10.6041/j.issn.1000-1298.2017.08.042
    [24]
    Zou J Y, Guo X X, Abdelkareem M A A, et al. Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers. Mech Syst Signal Process, 2019, 127: 345 doi: 10.1016/j.ymssp.2019.02.047
    [25]
    Chen Y Z, Qin B N, Guo S J, et al. Asymmetric energy harvesting and hydraulically interconnected suspension: Modeling and validations // Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim, 2019: 98402
    [26]
    Dixon J C. The Shock Absorber Handbook. 2nd Ed. Chichester: John Wiley & Sons, 2008
    [27]
    國家機械工業局. QC/T545—1999汽車筒式減振器臺架試驗方法. 北京: 中國計劃出版社, 1999

    Ministry of National Machinery Industry. QC/T545—1999 Telescopic Shock Absorber Bench Test Method. Beijing: China Planning Press, 1999
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (714) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频