Citation: | QIN Bo-nan, YANG Jue, LUO Wei-dong, ZHANG Wen-ming. Characteristic analysis of a novel energy-harvesting hydraulically-interconnected suspension[J]. Chinese Journal of Engineering, 2022, 44(12): 2154-2163. doi: 10.13374/j.issn2095-9389.2021.04.25.002 |
[1] |
涂俊敏. 機械式消扭懸架系統應用效果的仿真分析[學位論文]. 長春: 吉林大學, 2007
Tu J M. Simulation and Analysis of the Application Effect of Mechanical Elimination Torsion Suspension [Dissertation]. Changchun: Jilin University, 2007
|
[2] |
李仲興, 崔振, 徐興, 等. 互聯式空氣懸架動態特性試驗研究. 科學技術與工程, 2014, 14(14):82 doi: 10.3969/j.issn.1671-1815.2014.14.016
Li Z X, Cui Z, Xu X, et al. Experimental study on the dynamic performance of pneumatically interlinked air suspension. Sci Technol Eng, 2014, 14(14): 82 doi: 10.3969/j.issn.1671-1815.2014.14.016
|
[3] |
張云, 周孔亢, 錢寬. 互聯空氣懸架對整車振動性能的影響. 江蘇大學學報(自然科學版), 2017, 38(4):410
Zhang Y, Zhou K K, Qian K. Influence of interconnected air suspension on vehicle vibration performance. J Jiangsu Univ Nat Sci Ed, 2017, 38(4): 410
|
[4] |
Dou G W, Yu W H, Li Z X, et al. Sliding mode control of laterally interconnected air suspensions. Appl Sci, 2020, 10(12): 4320 doi: 10.3390/app10124320
|
[5] |
Chen Y, Hou Y B, Peterson A, et al. Failure mode and effects analysis of dual levelling valve airspring suspensions on truck dynamics. Veh Syst Dyn, 2019, 57(4): 617 doi: 10.1080/00423114.2018.1480787
|
[6] |
Chen Y, Peterson A W, Ahmadian M. Achieving anti-roll bar effect through air management in commercial vehicle pneumatic suspensions. Veh Syst Dyn, 2019, 57(12): 1775 doi: 10.1080/00423114.2018.1552005
|
[7] |
Smith W A, Zhang N, Hu W. Hydraulically interconnected vehicle suspension: Handling performance. Veh Syst Dyn, 2011, 49(1-2): 87 doi: 10.1080/00423111003596743
|
[8] |
Smith W A, Zhang N. Recent developments in passive interconnected vehicle suspension. Front Mech Eng China, 2010, 5(1): 1 doi: 10.1007/s11465-009-0092-z
|
[9] |
Yao Q L, Zhang X J, Guo K H, et al. Study on a novel dual-mode interconnected suspension. Int J Veh Des, 2015, 68(1-3): 81
|
[10] |
丁飛, 張農, 韓旭. 安裝液壓互聯懸架貨車的機械液壓多體系統建模及模態分析. 機械工程學報, 2012, 48(6):116 doi: 10.3901/JME.2012.06.116
Ding F, Zhang N, Han X. Modeling and modal analysis of multi-body truck system fitted with hydraulically interconnected suspension. J Mech Eng, 2012, 48(6): 116 doi: 10.3901/JME.2012.06.116
|
[11] |
周敏, 章杰, 鄭敏毅, 等. 裝有液壓互聯懸架車輛的越野性能仿真與試驗研究. 汽車工程, 2017, 39(4):447 doi: 10.19562/j.chinasae.qcgc.2017.04.013
Zhou M, Zhang J, Zheng M Y, et al. Simulation and experimental study on the off-road performance of vehicle with hydraulically interconnected suspension. Automot Eng, 2017, 39(4): 447 doi: 10.19562/j.chinasae.qcgc.2017.04.013
|
[12] |
Zhang Y X, Guo K H, Wang D, et al. Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy, 2017, 119: 961 doi: 10.1016/j.energy.2016.11.045
|
[13] |
Abdelkareem M A A, Xu L, Ali M K A, et al. Vibration energy harvesting in automotive suspension system: A detailed review. Appl Energy, 2018, 229: 672 doi: 10.1016/j.apenergy.2018.08.030
|
[14] |
Li Z J, Zuo L, Luhrs G, et al. Electromagnetic energy-harvesting shock absorbers: Design, modeling, and road tests. IEEE Trans Veh Technol, 2013, 62(3): 1065 doi: 10.1109/TVT.2012.2229308
|
[15] |
Li Z J, Zuo L, Kuang J, et al. Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater Struct, 2013, 22(2): 025008 doi: 10.1088/0964-1726/22/2/025008
|
[16] |
Liu Y L, Xu L, Zuo L. Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE/ASME Trans Mechatron, 2017, 22(5): 1933 doi: 10.1109/TMECH.2017.2700485
|
[17] |
Xiong Q C, Qin B N, Li X F, et al. A rule-based damping control of MMR-based energy-harvesting vehicle suspension // 2020 American Control Conference (ACC). Denver, 2020: 2262
|
[18] |
Zhang Y X, Zhang X J, Zhan M, et al. Study on a novel hydraulic pumping regenerative suspension for vehicles. J Frankl Inst, 2015, 352(2): 485 doi: 10.1016/j.jfranklin.2014.06.005
|
[19] |
Zhang Y X, Chen H, Guo K H, et al. Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation. Appl Energy, 2017, 199: 1 doi: 10.1016/j.apenergy.2017.04.085
|
[20] |
Guo S J, Xu L, Liu Y L, et al. Modeling and experiments of a hydraulic electromagnetic energy-harvesting shock absorber. IEEE/ASME Trans Mechatron, 2017, 22(6): 2684 doi: 10.1109/TMECH.2017.2760341
|
[21] |
方志剛, 過學迅, 左磊, 等. 液電饋能式減振器阻尼特性理論及試驗. 吉林大學學報(工學版), 2014, 44(4):939 doi: 10.13229/j.cnki.jdxbgxb201404007
Fang Z G, Guo X X, Zuo L, et al. Theory and experiment of damping characteristics of hydraulic electromagnetic energy-regenerative shock absorber. J Jilin Univ Eng Technol Ed, 2014, 44(4): 939 doi: 10.13229/j.cnki.jdxbgxb201404007
|
[22] |
陳龍, 張承龍, 汪若塵, 等. 液壓互聯式饋能懸架建模與優化設計. 農業機械學報, 2017, 48(1):303 doi: 10.6041/j.issn.1000-1298.2017.01.040
Chen L, Zhang C L, Wang R C, et al. Modeling and optimization design of hydraulically interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(1): 303 doi: 10.6041/j.issn.1000-1298.2017.01.040
|
[23] |
汪若塵, 蔣秋明, 葉青, 等. 液壓互聯饋能懸架特性分析與試驗. 農業機械學報, 2017, 48(8):350 doi: 10.6041/j.issn.1000-1298.2017.08.042
Wang R C, Jiang Q M, Ye Q, et al. Characteristics analysis and experiment of hydraulic interconnected energy-regenerative suspension. Trans Chin Soc Agric Mach, 2017, 48(8): 350 doi: 10.6041/j.issn.1000-1298.2017.08.042
|
[24] |
Zou J Y, Guo X X, Abdelkareem M A A, et al. Modelling and ride analysis of a hydraulic interconnected suspension based on the hydraulic energy regenerative shock absorbers. Mech Syst Signal Process, 2019, 127: 345 doi: 10.1016/j.ymssp.2019.02.047
|
[25] |
Chen Y Z, Qin B N, Guo S J, et al. Asymmetric energy harvesting and hydraulically interconnected suspension: Modeling and validations // Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim, 2019: 98402
|
[26] |
Dixon J C. The Shock Absorber Handbook. 2nd Ed. Chichester: John Wiley & Sons, 2008
|
[27] |
國家機械工業局. QC/T545—1999汽車筒式減振器臺架試驗方法. 北京: 中國計劃出版社, 1999
Ministry of National Machinery Industry. QC/T545—1999 Telescopic Shock Absorber Bench Test Method. Beijing: China Planning Press, 1999
|