<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
QIN Rong-man, ZHU Bo, QIAO Kun, WANG Dong-zhe, SUN Na, YUAN Xiao-min. Simulation study of the protective performance of composite structure carbon fiber bulletproof board[J]. Chinese Journal of Engineering, 2021, 43(10): 1346-1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001
Citation: QIN Rong-man, ZHU Bo, QIAO Kun, WANG Dong-zhe, SUN Na, YUAN Xiao-min. Simulation study of the protective performance of composite structure carbon fiber bulletproof board[J]. Chinese Journal of Engineering, 2021, 43(10): 1346-1354. doi: 10.13374/j.issn2095-9389.2021.04.21.001

Simulation study of the protective performance of composite structure carbon fiber bulletproof board

doi: 10.13374/j.issn2095-9389.2021.04.21.001
More Information
  • Corresponding author: E-mail: 82107918@qq.com
  • Received Date: 2021-04-21
    Available Online: 2021-05-28
  • Publish Date: 2021-10-12
  • Ceramic composite bulletproof armor is composed of hard ceramic and metal or fiber composite back plate and used as lightweight, protective armor to prevent the penetration of high-speed projectiles, such as armor-piercing projectiles. Presently, ceramic composite bulletproof armor has been a research hotspot in military protection. Alumina, boron carbide, silicon carbide, and silicon nitride are commonly used as hard ceramic materials in ceramic composite bulletproof armor systems to resist projectile impact. High-performance fibers, particularly carbon and ultrahigh-molecular-weight polyethylene (UHMWPE) fibers, are combined to improve the deformation resistance of the ceramic layer. Carbon fiber is a high-quality fiber with high specific strength and specific modulus. Carbon fiber plays an important role in ensuring the protection stability of ceramic bulletproof plates. The energy absorption process and absorption mechanism of ceramic composite bulletproof armor are complex at the moment of resisting projectile penetration. The simulation of the projectile penetration under different experimental conditions has always been the focus of bulletproof armor research. To address the core problem that the interfacial debonding between fiber and matrix determines energy absorption, a series of standard adhesion parameters are adopted to adjust the interfacial adhesion force of composite plates, and the interfacial delamination process is simulated based on the interfacial adhesion behavior and damage parameters. Simultaneously, using ABAQUS/Explicit, a high-speed impact damage analysis model of the ceramic/fiber composite bulletproof plate was established. Based on the analysis of the initial and residual velocities of the projectile, we investigated the relationship between structural components of the composite bulletproof plate, fiber performance, laminated layer structures, and resistance to penetration. Combined with the von Mises stress and matrix damage nephograms, the stress and damage forms of the composite bulletproof plate were discussed. Finally, the accuracy of the model was verified through ballistic impact experiments. The experimental results showed that the bulletproof plate composed of 13 mm SiC ceramic, 5 mm carbon fiber composite, and 17 mm UHMWPE composite effectively prevented the penetration of projectile and exhibited evident effects on the absorption of the kinetic energy of the projectile and the attenuation of projectile velocity.

     

  • loading
  • [1]
    陳磊, 徐志偉, 李嘉祿, 等. 防彈復合材料結構及其防彈機理. 材料工程, 2010, 38(11):94 doi: 10.3969/j.issn.1001-4381.2010.11.022

    Chen L, Xu Z W, Li J L, et al. Structure and bullet-proof mechanism of ballistic composites. J Mater Eng, 2010, 38(11): 94 doi: 10.3969/j.issn.1001-4381.2010.11.022
    [2]
    顧冰芳, 龔烈航, 徐國躍. UHMWPE纖維復合材料防彈機理和性能. 纖維復合材料, 2006, 23(1):20 doi: 10.3969/j.issn.1003-6423.2006.01.007

    Gu B F, Gong L H, Xu G Y. Ballistic resistance mechanism and performance of UHMWPE composites. Fiber Compos, 2006, 23(1): 20 doi: 10.3969/j.issn.1003-6423.2006.01.007
    [3]
    Kurzawa A, Pyka D, Jamroziak K, et al. Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al2O3 particles. Compos Struct, 2018, 201: 834 doi: 10.1016/j.compstruct.2018.06.099
    [4]
    李超, 劉建超. 復合材料裝甲技術的發展及應用. 化工新型材料, 2004, 32(6):46 doi: 10.3969/j.issn.1006-3536.2004.06.015

    Li C, Liu J C. Development and application of advanced composite armor technology. New Chem Mater, 2004, 32(6): 46 doi: 10.3969/j.issn.1006-3536.2004.06.015
    [5]
    Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1. Ceram Int, 2010, 36(7): 2103 doi: 10.1016/j.ceramint.2010.05.021
    [6]
    Zhou Z S, Wu G H, Jiang L T, et al. Analysis of morphology and microstructure of B4C/2024Al composites after 7.62 mm ballistic impact. Mater Des, 2014, 63: 658
    [7]
    Karamis M B, Tasdemirci A, Nair F. Failure and tribological behaviour of the AA5083 and AA6063 composites reinforced by SiC particles under ballistic impact. Compos A:Appl Sci Manuf, 2003, 34(3): 217 doi: 10.1016/S1359-835X(03)00024-1
    [8]
    侯海量, 朱錫, 闞于龍. 輕型陶瓷復合裝甲結構抗彈性能研究進展. 兵工學報, 2008, 29(2):208 doi: 10.3321/j.issn:1000-1093.2008.02.017

    Hou H L, Zhu X, Kan Y L. The advance of ballistic performance of light ceramic composite armour under the impact of projectile. Acta Armamentarii, 2008, 29(2): 208 doi: 10.3321/j.issn:1000-1093.2008.02.017
    [9]
    李家駒, 張茂安. 防彈碳纖維復合材料. 玻璃鋼/復合材料, 2004(5):9

    Li J J, Zhang M A. Anti-bullet carbon fiber reinforced plastics. Fiber Reinf Plast, 2004(5): 9
    [10]
    張曉晴, 姚小虎, 楊桂通, 等. 陶瓷/金屬復合靶板侵徹問題的數值模擬. 華南理工大學學報(自然科學版), 2005, 33(4):69

    Zhang X Q, Yao X H, Yang G T, et al. Numerical simulation of penetration of composite ceramic/metal armours. J South China Univ Technol Nat Sci, 2005, 33(4): 69
    [11]
    Zhang B, Nian X Z, Jin F N, et al. Failure analyses of flexible Ultra-High Molecular Weight Polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion. Compos Struct, 2018, 184: 759 doi: 10.1016/j.compstruct.2017.10.037
    [12]
    Schwab M, Todt M, Tauchner J, et al. Modeling, simulation, and experiments of high velocity impact on laminated composites. Compos Struct, 2018, 205: 42 doi: 10.1016/j.compstruct.2018.08.047
    [13]
    Liu W L, Chen Z H, Chen Z F, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater Des, 2015, 87: 421 doi: 10.1016/j.matdes.2015.08.024
    [14]
    Tepeduzu B, Karakuzu R. Ballistic performance of ceramic/composite structures. Ceram Int, 2019, 45(2): 1651 doi: 10.1016/j.ceramint.2018.10.042
    [15]
    Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for constitutive model constants. J Appl Phys, 1988, 64(8): 3901 doi: 10.1063/1.341344
    [16]
    Holmquist T J, Johnson G R. Modeling prestressed ceramic and its effect on ballistic performance. Int J Impact Eng, 2005, 31(2): 113 doi: 10.1016/j.ijimpeng.2003.11.002
    [17]
    周慶, 劉婷, 何業茂. 防彈裝甲中新型抗凹陷材料的研究. 中國個體防護裝備, 2019(1):22

    Zhou Q, Liu T, He Y M. Study on new anti-trauma material in bulletproof armour. China Pers Prot Equip, 2019(1): 22
    [18]
    Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials // AIP Conference Proceedings. Colorado, 1994: 981
    [19]
    Sharma A, Mishra R, Jain S, et al. Deformation behavior of single and multi-layered materials under impact loading. Thin Walled Struct, 2018, 126: 193 doi: 10.1016/j.tws.2017.08.021
    [20]
    Wang L, Zheng C X, Luo H Y, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos Struct, 2015, 134: 475 doi: 10.1016/j.compstruct.2015.08.107
    [21]
    Cheeseman B A, Bogetti T A. Ballistic impact into fabric and compliant composite laminates. Compos Struct, 2003, 61(1-2): 161 doi: 10.1016/S0263-8223(03)00029-1
    [22]
    Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct, 2012, 94(9): 2902 doi: 10.1016/j.compstruct.2012.03.039
    [23]
    孫西超, 李艷清, 伍仲, 等. STF?柔性復合材料的防彈性能研究. 浙江理工大學學報, 2014, 31(3):127

    Sun X C, Li Y Q, Wu Z, et al. Study on bulletproof property of STF-flexible composite. J Zhejiang Sci Tech Univ, 2014, 31(3): 127
    [24]
    Mohagheghian I, Wang Y, Zhou J, et al. Deformation and damage mechanisms of laminated glass windows subjected to high velocity soft impact. Int J Solids Struct, 2017, 109: 46 doi: 10.1016/j.ijsolstr.2017.01.006
    [25]
    Palomar M, Lozano-Mínguez E, Rodríguez-Millán M, et al. Relevant factors in the design of composite ballistic helmets. Compos Struct, 2018, 201: 49 doi: 10.1016/j.compstruct.2018.05.076
    [26]
    岳新艷, 李振楠, 郭冠宇, 等. 碳化硼?泡沫鋁雙層復合材料的制備及其防彈性能. 工程科學學報, 2014, 36(8):1082

    Yue X Y, Li Z N, Guo G Y, et al. Preparation and ballistic resistance of B4C-Al foam composites with a bilayer structure. Chin J Eng, 2014, 36(8): 1082
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views (4389) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频