<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Ben-xin, JIN Ai-bing, ZHAO Yi-qing, SUN Hao, LIU Jia-zhu. Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC[J]. Chinese Journal of Engineering, 2022, 44(12): 2029-2039. doi: 10.13374/j.issn2095-9389.2021.04.11.001
Citation: WANG Ben-xin, JIN Ai-bing, ZHAO Yi-qing, SUN Hao, LIU Jia-zhu. Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC[J]. Chinese Journal of Engineering, 2022, 44(12): 2029-2039. doi: 10.13374/j.issn2095-9389.2021.04.11.001

Fracture characteristics and the damage constitutive model of 3D printing undulating joint samples based on DIC

doi: 10.13374/j.issn2095-9389.2021.04.11.001
More Information
  • Corresponding author: E-mail: yiqingzhao@126.com
  • Received Date: 2021-04-11
    Available Online: 2021-05-31
  • Publish Date: 2022-12-01
  • Due to the influence of geological structures, various forms of joint structural planes are present in rock mass engineering. The undulating structural planes, such as a torsional fold surface, are unique geological structures. These structures affect the stability of rock masses and cause potential hazards to rock mass engineering. Because of their shape complexity, the research on the fracture and damage constitutive law of rock mass with undulating joints is not thoroughly conducted. Undulating joints with various dip angles were fabricated using three-dimensional printing technology. The uniaxial compression test and digital image correlation (DIC) technology were used to study the mechanical and fracture characteristics of undulating joint specimens. Based on the principle of fracture mechanics, an idea was proposed to use the DIC displacement field for solving the stress intensity factor (SIF: type one KI and type two KII) at the joint tips and to study the damage constitutive law. The results show that the upper limit of undulating joint damage to specimens is determined with 46.6% through the minimum strength analysis. The sensitivity of uniaxial strength to a joint dip angle of undulating joint specimen is greater than that of a straight joint specimen. The fracture initiation occurs near peak stress. The fracture process can be divided into the initiation and synchronous penetration of microcracks on the fracture path. Additionally, the fracture mode shows a combination of multiple tension and shear fractures. The SIF increases with loading at the prepeak stage, and the cracks propagate in shear fracture at the joint left and right tips in the postpeak stage because KII>KI under the same stress. The undulating joint damage to the specimen with the dip angle is in a sinusoidal curve form. The relationships between the total damage coupled by joint and load with strain are all “S” curves.

     

  • loading
  • [1]
    Usefzadeh A, Yousefzadeh H, Salari-Rad H, et al. Empirical and mathematical formulation of the shear behavior of rock joints. Eng Geol, 2013, 164: 243 doi: 10.1016/j.enggeo.2013.07.013
    [2]
    金愛兵, 孫浩, 孟新秋, 等. 非貫通節理巖體等效強度及破壞特性. 中南大學學報(自然科學版), 2016, 47(9):3169 doi: 10.11817/j.issn.1672-7207.2016.09.035

    Jin A B, Sun H, Meng X Q, et al. Equivalent strength and failure behavior of intermittent jointed rock mass. J Central South Univ (Sci Technol), 2016, 47(9): 3169 doi: 10.11817/j.issn.1672-7207.2016.09.035
    [3]
    Bao H, Xu X H, Lan H X, et al. A new joint morphology parameter considering the effects of micro-slope distribution of joint surface. Eng Geol, 2020, 275: 105734 doi: 10.1016/j.enggeo.2020.105734
    [4]
    賀超良, 湯朝暉, 田華雨, 等. 3D打印技術制備生物醫用高分子材料的研究進展. 高分子學報, 2013(6):722

    He C L, Tang H T, Tian H Y, et al. Progress in the development of biomedical polymer materials fabricated by 3-dimensional printing technology. Acta Polym Sin, 2013(6): 722
    [5]
    史玉升, 閆春澤, 魏青松, 等. 選擇性激光燒結3D打印用高分子復合材料. 中國科學:信息科學, 2015, 45(2):204 doi: 10.1360/N112014-00222

    Shi Y S, Yan C Z, Wei Q S, et al. Polymer based composites for selective laser sintering 3D printing technology. Sci Sin Informationis, 2015, 45(2): 204 doi: 10.1360/N112014-00222
    [6]
    張學軍, 唐思熠, 肇恒躍, 等. 3D打印技術研究現狀和關鍵技術. 材料工程, 2016, 44(2):122 doi: 10.11868/j.issn.1001-4381.2016.02.019

    Zhang X J, Tang S Y, Zhao H Y, et al. Research status and key technologies of 3D printing. J Mater Eng, 2016, 44(2): 122 doi: 10.11868/j.issn.1001-4381.2016.02.019
    [7]
    王本鑫, 金愛兵, 趙怡晴, 等. 基于CT掃描的含非貫通節理3D打印試件破裂規律試驗研究. 巖土力學, 2019, 40(10):3920

    Wang B X, Jin A B, Zhao Y Q, et al. Fracture law of 3D printing specimen with non-consecutive joints based on CT scanning. Rock Soil Mech, 2019, 40(10): 3920
    [8]
    王本鑫, 金愛兵, 王樹亮, 等. 3D打印交叉節理試件力學破裂特性研究. 巖土力學, 2021, 42(1):39

    Wang B X, Jin A B, Wang S L, et al. Mechanical characteristics and fracture mechanism of 3D printed rock samples with cross joints. Rock Soil Mech, 2021, 42(1): 39
    [9]
    江權, 宋磊博. 3D打印技術在巖體物理模型力學試驗研究中的應用研究與展望. 巖石力學與工程學報, 2018, 37(1):23

    Jiang Q, Song L B. Study on application of 3D printing technology for physical modeling in rock mechanics and outlook. Chin J Rock Mech Eng, 2018, 37(1): 23
    [10]
    王帥, 于慶磊, 王玲. 單軸壓縮條件下裂隙粗糙度對滲透系數的影響. 工程科學學報, 2021, 43(7):915

    Wang S, Yu Q, Wang L. Effect of fracture roughness on permeability coefficient under uniaxial compression. Chin J Eng, 2021, 43(7): 915
    [11]
    Jiang Q, Song L B, Yan F, et al. Experimental investigation of anisotropic wear damage for natural joints under direct shearing test. Int J Geomech, 2020, 20(4): 04020015 doi: 10.1061/(ASCE)GM.1943-5622.0001617
    [12]
    Feng X W, Xue F, Wang T Z, et al. Reinforcing effects of 3D printed bolts on joint-separated standard soft rock specimens. Compos B:Eng, 2020, 193: 108024 doi: 10.1016/j.compositesb.2020.108024
    [13]
    王培濤, 黃正均, 任奮華, 等. 基于3D打印的含復雜節理巖石直剪特性及破壞機制研究. 巖土力學, 2020, 41(1):46

    Wang P T, Huang Z J, Ren F H, et al. Investigation of direct shear behavior and fracture patterns of 3D-printed complex jointed rock models. Rock Soil Mech, 2020, 41(1): 46
    [14]
    金愛兵, 王樹亮, 王本鑫, 等. 基于DIC技術的3D打印節理試件破裂機制研究. 巖土力學, 2020, 41(10):3214

    Jin A B, Wang S L, Wang B X, et al. Study on the fracture mechanism of 3D-printed-joint specimens based on DIC technology. Rock Soil Mech, 2020, 41(10): 3214
    [15]
    金愛兵, 王樹亮, 王本鑫, 等. 基于DIC的3D打印交叉節理試件破裂機制研究. 巖土力學, 2020, 41(12):3862

    Jin A B, Wang S L, Wang B X, et al. Fracture mechanism of specimens with 3D printing cross joint based on DIC technology. Rock Soil Mech, 2020, 41(12): 3862
    [16]
    劉紅巖, 呂淑然, 張力民. 基于組合模型法的貫通節理巖體動態損傷本構模型. 巖土工程學報, 2014, 36(10):1814 doi: 10.11779/CJGE201410008

    Liu H Y, Lü S R, Zhang L M. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method. Chin J Geotech Eng, 2014, 36(10): 1814 doi: 10.11779/CJGE201410008
    [17]
    劉紅巖, 李俊峰, 裴小龍. 單軸壓縮下斷續節理巖體動態損傷本構模型. 爆炸與沖擊, 2018, 38(2):316 doi: 10.11883/bzycj-2016-0261

    Liu H Y, Li J F, Pei X L. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression. Explos Shock Waves, 2018, 38(2): 316 doi: 10.11883/bzycj-2016-0261
    [18]
    胡亞元, 王超. 多節理巖體的非線性耦合損傷本構模型. 煤炭學報, 2019, 44(增刊1): 52

    Hu Y Y, Wang C. Nonlinear coupling damage constitutive model for multi-jointed rock mass. J China Coal Soc, 2019, 44(Suppl 1): 52
    [19]
    汪杰, 李楊, 宋衛東, 等. 不同傾角節理巖體損傷演化特征分析. 哈爾濱工業大學學報, 2019, 51(8):143 doi: 10.11918/j.issn.0367-6234.201805091

    Wang J, Li Y, Song W D, et al. Analysis of damage evolution characteristics of jointed rock mass with different joint dip angles. J Harbin Inst Technol, 2019, 51(8): 143 doi: 10.11918/j.issn.0367-6234.201805091
    [20]
    代樹紅, 馬勝利, 潘一山, 等. 數字散斑相關方法測定巖石Ⅰ型應力強度因子. 巖石力學與工程學報, 2012, 31(12):2501 doi: 10.3969/j.issn.1000-6915.2012.12.014

    Dai S H, Ma S L, Pan Y S, et al. Evaluation of mode i stress intensity factor of rock utilizing digital speckle correlation method. Chin J Rock Mech Eng, 2012, 31(12): 2501 doi: 10.3969/j.issn.1000-6915.2012.12.014
    [21]
    宋義敏, 邢同振, 呂祥鋒, 等. 不同加載速率Ⅰ型預制裂紋花崗巖斷裂特征研究. 巖土力學, 2018, 39(12):4369

    Song Y M, Xing T Z, Lü X F, et al. Fracture characteristics of granite with mode-I pre-crack at different loading rates. Rock Soil Mech, 2018, 39(12): 4369
    [22]
    張蕊, 賀玲鳳. 數字圖像相關法測量聚碳酸酯板應力強度因子. 工程力學, 2012, 29(12):22 doi: 10.6052/j.issn.1000-4750.2011.04.0250

    Zhang R, He L F. Evaluating stress intensity factor of polycarbonate using digital image correlation. Eng Mech, 2012, 29(12): 22 doi: 10.6052/j.issn.1000-4750.2011.04.0250
    [23]
    王奇智, 夏開文, 吳幫標, 等. 預制平行雙節理類巖石材料板動態破壞試驗研究. 天津大學學報(自然科學與工程技術版), 2019, 52(10):1099

    Wang Q Z, Xia K W, Wu B B, et al. Dynamic failure of simulated rock mass plate containing two parallel cracks. J Tianjin Univ (Sci Technol), 2019, 52(10): 1099
    [24]
    鄭安興, 羅先啟. 壓剪應力狀態下巖石復合型斷裂判據的研究. 巖土力學, 2015, 36(7):1892

    Zheng A X, Luo X Q. Research on combined fracture criterion of rock under compression-shear stress. Rock Soil Mech, 2015, 36(7): 1892
    [25]
    寧建國, 朱志武. 含損傷的凍土本構模型及耦合問題數值分析. 力學學報, 2007, 39(1):70 doi: 10.3321/j.issn:0459-1879.2007.01.009

    Ning J G, Zhu Z W. Constitutive model of frozen soil with damage and numerical simulation of the coupled problem. Chin Joumal Theor Appl Mech, 2007, 39(1): 70 doi: 10.3321/j.issn:0459-1879.2007.01.009
    [26]
    張慧梅, 楊更社. 凍融與荷載耦合作用下巖石損傷模型的研究. 巖石力學與工程學報, 2010, 29(3):471

    Zhang H M, Yang G S. Research on damage model of rock under coupling action of freeze-thaw and load. Chin J Rock Mech Eng, 2010, 29(3): 471
    [27]
    袁小清, 劉紅巖, 劉京平. 基于宏細觀損傷耦合的非貫通裂隙巖體本構模型. 巖土力學, 2015, 36(10):2804

    Yuan X Q, Liu H Y, Liu J P. Constitutive model of rock mass with non-persistent joints based on coupling macroscopic and mesoscopic damages. Rock Soil Mech, 2015, 36(10): 2804
    [28]
    易順民, 朱珍德. 裂隙巖體損傷力學導論. 北京: 科學出版社, 2005

    Yi S M, Zhu Z D. Introduction to Damage Mechanics of Fractured Rock Mass. Beijing: Science Press, 2005
    [29]
    朱維申, 張強勇. 節理巖體脆彈性斷裂損傷模型及其工程應用. 巖石力學與工程學報, 1999, 18(3):245 doi: 10.3321/j.issn:1000-6915.1999.03.001

    Zhu W S, Zhang Q Y. Brittle elastic fracture damage constitutive model of jointed rockmass and its application to engineering. Chin J Rock Mech Eng, 1999, 18(3): 245 doi: 10.3321/j.issn:1000-6915.1999.03.001
    [30]
    汪杰, 宋衛東, 付建新. 考慮節理傾角的巖體損傷本構模型及強度準則. 巖石力學與工程學報, 2018, 37(10):2253

    Wang J, Song W D, Fu J X. A damage constitutive model and strength criterion of rock mass considering the dip angle of joints. Chin J Rock Mech Eng, 2018, 37(10): 2253
    [31]
    張慧梅, 彭川, 楊更社, 等. 考慮凍融效應的巖石損傷統計強度準則研究. 中國礦業大學學報, 2017, 46(5):1066

    Zhang H M, Peng C, Yang G S, et al. Study of damage statistical strength criterion of rock considering the effect of freezing and thawing. J China Univ Min Technol, 2017, 46(5): 1066
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views (583) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频