<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LIU Li-yuan, ZHANG Le, JI Hong-guang. Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields[J]. Chinese Journal of Engineering, 2022, 44(4): 516-525. doi: 10.13374/j.issn2095-9389.2021.04.09.003
Citation: LIU Li-yuan, ZHANG Le, JI Hong-guang. Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields[J]. Chinese Journal of Engineering, 2022, 44(4): 516-525. doi: 10.13374/j.issn2095-9389.2021.04.09.003

Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields

doi: 10.13374/j.issn2095-9389.2021.04.09.003
More Information
  • Corresponding author: E-mail: jihongguang@ces.ustb.edu.cn
  • Received Date: 2021-04-09
    Available Online: 2021-06-15
  • Publish Date: 2022-04-02
  • The demands for deep underground mining and construction are increasing with the continuing development of society and the economy. Deep underground chambers function as primary elements in deep underground mining and other subsurface facilities. Therefore, rational designs of such chambers would play a pivotal role in construction safety and economic efficiency. The primary goal of this study is to reveal the relation between the in situ stress field and axes of an elliptical cross section of an underground chamber. Based on the rock deformation and damage, a numerical model is developed to define the heterogeneous damage evolution near the chamber. In this parametric study, we characterized the damage evolution in response to the chamber’s cross-sectional shape, lateral stress coefficient, and tectonic stress azimuth, thus introducing the critical lateral stress coefficient to define the chamber stability. Furthermore, a case study of a ?2000 m chamber in the Sanshandao gold mine was conducted using the proposed model to optimize the shape, design, and location analysis of the underground mining chamber. Simulation outcomes show that the damaged area and stress concentration near the chamber are minimized when the axis ratio is equal to the lateral stress coefficient. The damaged area is determined by the in situ stress configuration; a high lateral stress coefficient sees a pronounced increment in the tension stress inside the roof and floor of the chamber, resulting in an exponential enlargement of the damaged area. Compared with the shallow underground chamber, the deep chamber is more sensitive to an increase in the lateral stress coefficient. With an increase in depth, the critical lateral stress coefficient gradually decreased to 1. The larger horizontal tectonic stress in the deep strata causes damage accumulation in the roof and the floor, encouraging rock outbursts in the damaged zones. To conclude, to optimize the design and minimize the outburst hazard for a deep underground chamber, the chamber’s cross-sectional shape, axes ratio, and direction must reasonably reflect the in situ stress field.

     

  • loading
  • [1]
    Feng X T, Liu J P, Chen B R, et al. Monitoring, warning, and control of rockburst in deep metal mines. Engineering, 2017, 3(4): 538 doi: 10.1016/J.ENG.2017.04.013
    [2]
    Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
    [3]
    謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283

    Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283
    [4]
    何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001

    He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
    [5]
    Liu L Y, Ji H G, Lü X F, et al. Mitigation of greenhouse gases released from mining activities: A review. Int J Miner Metall Mater, 2021, 28(4): 513 doi: 10.1007/s12613-020-2155-4
    [6]
    Li X B, Gong F Q, Tao M, et al. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review. J Rock Mech Geotech Eng, 2017, 9(4): 767 doi: 10.1016/j.jrmge.2017.04.004
    [7]
    Gong Q M, Yin L J, Wu S Y, et al. Rock burst and slabbing failure and its influence on TBM excavation at headrace tunnels in Jinping II hydropower station. Eng Geol, 2012, 124: 98 doi: 10.1016/j.enggeo.2011.10.007
    [8]
    李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129

    Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129
    [9]
    Martin C D, Christiansson R. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int J Rock Mech Min Sci, 2009, 46(2): 219 doi: 10.1016/j.ijrmms.2008.03.001
    [10]
    劉力源, 紀洪廣, 王濤, 等. 高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理. 工程科學學報, 2020, 42(6):715

    Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715
    [11]
    楊仁樹, 朱衍利, 吳寶楊, 等. 大傾角松軟厚煤層巷道優化設計及數值分析. 中國礦業, 2010, 19(9):73 doi: 10.3969/j.issn.1004-4051.2010.09.021

    Yang R S, Zhu Y L, Wu B Y, et al. Numerical analysis and optimization design of large angle soft thick coal seam roadway. China Min Mag, 2010, 19(9): 73 doi: 10.3969/j.issn.1004-4051.2010.09.021
    [12]
    Chen J, Lu D, Liu W, et al. Stability study and optimization design of small-spacing two-well (SSTW) salt Caverns for natural gas storages. J Energy Storage, 2020, 27: 101131 doi: 10.1016/j.est.2019.101131
    [13]
    Mobaraki B, Vaghefi M. Numerical study of the depth and cross-sectional shape of tunnel under surface explosion. Tunn Undergr Space Technol, 2015, 47: 114 doi: 10.1016/j.tust.2015.01.003
    [14]
    Galli G, Grimaldi A, Leonardi A. Three-dimensional modelling of tunnel excavation and lining. Comput Geotech, 2004, 31(3): 171 doi: 10.1016/j.compgeo.2004.02.003
    [15]
    孟慶彬, 韓立軍, 喬衛國, 等. 深部高應力軟巖巷道斷面形狀優化設計數值模擬研究. 采礦與安全工程學報, 2012, 29(5):650

    Meng Q B, Han L J, Qiao W G, et al. Numerical simulation of cross-section shape optimization design of deep soft rock roadway under high stress. J Min Saf Eng, 2012, 29(5): 650
    [16]
    于學馥, 喬端. 軸變論和圍巖穩定軸比三規律. 有色金屬, 1981(3):8

    Yu X F, Qiao D. Theory of axial variation and three rules of axial ratio for stabilizing country rock. Nonferrous Met, 1981(3): 8
    [17]
    于學馥. 軸變論與圍巖變形破壞的基本規律. 鈾礦冶, 1982, 1(1):8

    Yu X F. On the theory of axial variation and basic rules of deformation and fracture of rocks surrounding underground excavations. Uranium Min Metall, 1982, 1(1): 8
    [18]
    Li S J, Feng X T, Li Z H, et al. Evolution of fractures in the excavation damaged zone of a deeply buried tunnel during TBM construction. Int J Rock Mech Min Sci, 2012, 55: 125 doi: 10.1016/j.ijrmms.2012.07.004
    [19]
    Falls S D, Young R P. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock. Tectonophysics, 1998, 289(1-3): 1 doi: 10.1016/S0040-1951(97)00303-X
    [20]
    Hakami H. Rock characterisation facility (RCF) shaft sinking—numerical computations using FLAC. Int J Rock Mech Min Sci, 2001, 38(1): 59 doi: 10.1016/S1365-1609(00)00064-2
    [21]
    Read R S, Chandler N A, Dzik E J. In situ strength criteria for tunnel design in highly-stressed rock masses. Int J Rock Mech Min Sci, 1998, 35(3): 261 doi: 10.1016/S0148-9062(97)00302-1
    [22]
    Chang S H, Lee C I, Lee Y K. An experimental damage model and its application to the evaluation of the excavation damage zone. Rock Mech Rock Eng, 2007, 40(3): 245 doi: 10.1007/s00603-006-0113-8
    [23]
    張小波, 趙光明, 孟祥瑞, 等. 考慮非線性脆性損傷和中間主應力影響的圓形巷道圍巖分析. 煤炭學報, 2014, 39(增刊2): 339

    Zhang X B, Zhao G M, Meng X R, et al. Analysis on surrounding rock of circular roadway considering nonlinear brittle damage and intermediate principal stress. J China Coal Soc, 2014, 39(Suppl 2): 339
    [24]
    蔡德所, 張繼春, 劉浩吾. 基巖爆破損傷的數值模擬及其工程應用. 水利學報, 1997, 28(4):68

    Cai D S, Zhang J C, Liu H W. Numerical simulation and application of blasting damage of bed rock mass. J Hydraul Eng, 1997, 28(4): 68
    [25]
    楊棟, 李海波, 夏祥, 等. 高地應力下隧道圍巖動力損傷分析. 巖土力學, 2013, 34(增刊2): 311

    Yang D, Li H B, Xia X, et al. Study of dynamic damage of surrounding rocks for tunnels under high in situ stress. Rock Soil Mech, 2013, 34(Suppl 2): 311
    [26]
    Liu L Y, Ji H G, Elsworth D, et al. Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci, 2020, 126: 104185 doi: 10.1016/j.ijrmms.2019.104185
    [27]
    Liu L Y, Zhu W C, Wei C H, et al. Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing. J Petroleum Sci Eng, 2018, 164: 91 doi: 10.1016/j.petrol.2018.01.049
    [28]
    Liu L Y, Li L C, Elsworth D, et al. The impact of oriented perforations on fracture propagation and complexity in hydraulic fracturing. Processes, 2018, 6(11): 213 doi: 10.3390/pr6110213
    [29]
    Zhu W C, Liu L Y, Liu J S, et al. Impact of gas adsorption-induced coal damage on the evolution of coal permeability. Int J Rock Mech Min Sci, 2018, 101: 89 doi: 10.1016/j.ijrmms.2017.11.007
    [30]
    何滿潮, 呂曉儉, 景海河. 深部工程圍巖特性及非線性動態力學設計理念. 巖石力學與工程學報, 2002, 21(8):1215 doi: 10.3321/j.issn:1000-6915.2002.08.022

    He M C, Lu X J, Jing H H. Characters of surrounding rockmass in deep engineering and its non-linear dynamic-mechanical design concept. Chin J Rock Mech Eng, 2002, 21(8): 1215 doi: 10.3321/j.issn:1000-6915.2002.08.022
    [31]
    魯巖, 鄒喜正, 劉長友, 等. 構造應力場中的巷道布置. 采礦與安全工程學報, 2008, 25(2):144 doi: 10.3969/j.issn.1673-3363.2008.02.004

    Lu Y, Zou X Z, Liu C Y, et al. Roadway layout in tectonic stress field. J Min Saf Eng, 2008, 25(2): 144 doi: 10.3969/j.issn.1673-3363.2008.02.004
    [32]
    李桂臣, 張農, 王成, 等. 高地應力巷道斷面形狀優化數值模擬研究. 中國礦業大學學報, 2010, 39(5):652

    Li G C, Zhang N, Wang C, et al. Optimizing the section shape of roadways in high stress ground by numerical simulation. J China Univ Min Technol, 2010, 39(5): 652
    [33]
    姜耀東, 劉文崗, 趙毅鑫, 等. 開灤礦區深部開采中巷道圍巖穩定性研究. 巖石力學與工程學報, 2005, 24(11):1857 doi: 10.3321/j.issn:1000-6915.2005.11.007

    Jiang Y D, Liu W G, Zhao Y X, et al. Study on surrounding rock stability of deep mining in Kailuan mining group. Chin J Rock Mech Eng, 2005, 24(11): 1857 doi: 10.3321/j.issn:1000-6915.2005.11.007
    [34]
    康紅普, 伊丙鼎, 高富強, 等. 中國煤礦井下地應力數據庫及地應力分布規律. 煤炭學報, 2019, 44(1):23

    Kang H P, Yi B D, Gao F Q, et al. Database and characteristics of underground in-situ stress distribution in Chinese coal mines. J China Coal Soc, 2019, 44(1): 23
    [35]
    王存文, 姜福興, 劉金海. 構造對沖擊地壓的控制作用及案例分析. 煤炭學報, 2012, 37(增刊2): 263

    Wang C W, Jiang F X, Liu J H. Analysis on control action of geologic structure on rock burst and typical cases. J China Coal Soc, 2012, 37(Suppl 2): 263
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(23)

    Article views (903) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频