<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
XIAO Long-heng, TANG Xu-long, LU Guang-hua, ZHANG Ying, GUO Min, ZHANG Mei. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil[J]. Chinese Journal of Engineering, 2022, 44(2): 289-304. doi: 10.13374/j.issn2095-9389.2021.04.08.002
Citation: XIAO Long-heng, TANG Xu-long, LU Guang-hua, ZHANG Ying, GUO Min, ZHANG Mei. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil[J]. Chinese Journal of Engineering, 2022, 44(2): 289-304. doi: 10.13374/j.issn2095-9389.2021.04.08.002

Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil

doi: 10.13374/j.issn2095-9389.2021.04.08.002
More Information
  • Corresponding author: E-mail: zhangmei@ustb.edu.cn
  • Received Date: 2021-04-08
    Available Online: 2021-05-24
  • Publish Date: 2022-02-15
  • With the rapid development of industrialization and human civilization, the soil polluted by heavy, toxic lead is becoming increasingly severe worldwide. Thus, it is imperative to control soil pollution due to lead. In this paper, the background, status, and harm of lead-polluted soil were introduced, and the source, mode of occurrence, and extraction of lead from the soil were depicted in detail. Based on the current soil remediation technology, three major methods, namely, physical, chemical, and bioremediation, have been systematically reviewed, and their advantages and disadvantages from the aspects of efficiency, applicability, and economy were evaluated and compared. Results reveal that the most preferred remediation method for heavy, toxic, lead-contaminated soil is chemical remediation. The chemical leaching and immobilization/stabilization methods were subsequently introduced in detail, and the remediation mechanism, effect, applicability, and application prospect of the different types of eluants and curing agents were evaluated and discussed. Finally, the prospect of cleaning and efficient remediation of heavy, toxic, lead-contaminated soil was presented. The restoration should minimize the damage to the soil. For the heavy, lead-contaminated soil, the development of the joint remediation technology is the potential development direction. The mechanism of soil remediation and directional remediation should be determined as soon as possible. Meanwhile, the research and development of multifunctional composite materials should be strengthened.

     

  • loading
  • [1]
    盧光華, 岳昌盛, 彭犇, 等. 汞污染土壤修復技術的研究進展. 工程科學學報, 2017, 39(1):1

    Lu G H, Yue C S, Peng B, et al. Review of research progress on the remediation technology of mercury contaminated soil. Chin J Eng, 2017, 39(1): 1
    [2]
    Suter G W, Efroymson R A, Sample B E, et al. Ecological Risk Assessment for Contaminated Sites. 1nd ED. London: Taylor & Francis, 2000
    [3]
    Williams P N, Lei M, Sun G, et al. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol, 2009, 43(3): 637 doi: 10.1021/es802412r
    [4]
    Tóth G, Hermann T, Silva M R, et al. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int, 2016, 88: 299 doi: 10.1016/j.envint.2015.12.017
    [5]
    陳能場, 鄭煜基, 何曉峰, 等. 《全國土壤污染狀況調查公報》探析. 農業環境科學學報, 2017, 36(9):1689 doi: 10.11654/jaes.2017-1220

    Chen N C, Zheng Y J, He X F, et al. Analysis of the Report on the national general survey of soil contamination. J Agro Environ Sci, 2017, 36(9): 1689 doi: 10.11654/jaes.2017-1220
    [6]
    He Z Q, Shen J, Ni Z L, et al. Electrochemically created roughened lead plate for electrochemical reduction of aqueous CO2. Catal Commun, 2015, 72: 38 doi: 10.1016/j.catcom.2015.08.024
    [7]
    Liu X M, Song Q J, Tang Y, et al. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci Total Environ, 2013, 463-464: 530 doi: 10.1016/j.scitotenv.2013.06.064
    [8]
    林肇信. 環境保護概論. 2版. 北京: 高等教育出版社, 1999

    Lin Z X. Introduction to Environment Protection. 2nd Ed. Beijing: Higher Education Press, 1999
    [9]
    He K M, Wang S Q, Zhang J L. Blood lead levels of children and its trend in China. Sci Total Environ, 2009, 407(13): 3986 doi: 10.1016/j.scitotenv.2009.03.018
    [10]
    謝正苗. 環境中鉛的化學循環. 環境保護科學, 1996, 22(3):8

    Xie Z M. Chemical cycles of lead in environment. Environ Prot Sci, 1996, 22(3): 8
    [11]
    劉云惠, 魏顯有, 王秀敏, 等. 土壤中鉛鎘的化學形態和有效態的提取與分離研究. 河北農業大學學報, 1998, 21(4):44

    Liu Y H, Wei X Y, Wang X M, et al. A study of the extraction and seperation of the chemical form and available state of lead and cadmium in soil. J Agric Univ Hebei, 1998, 21(4): 44
    [12]
    Egirani D E, Poyi N R, Wessey N. Synthesis of a copper(II) oxide-montmorillonite composite for lead removal. Int J Miner Metall Mater, 2019, 26(7): 803 doi: 10.1007/s12613-019-1788-7
    [13]
    楊金燕, 楊肖娥, 何振立. 土壤中鉛的來源及生物有效性. 土壤通報, 2005, 36(5):765 doi: 10.3321/j.issn:0564-3945.2005.05.030

    Yang J Y, Yang X E, Wu Y Y, et al. Resource and bio-availability of lead in soil. Chin J Soil Sci, 2005, 36(5): 765 doi: 10.3321/j.issn:0564-3945.2005.05.030
    [14]
    Hu B F, Shao S, Ni H, et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at Province level. Environ Pollut, 2020, 266: 114961 doi: 10.1016/j.envpol.2020.114961
    [15]
    Wilson R, Jones-Otazo H, Petrovic S, et al. Revisiting dust and soil ingestion rates based on hand-to-mouth transfer. Hum Ecol Risk Assess:Int J, 2013, 19(1): 158 doi: 10.1080/10807039.2012.685807
    [16]
    韋友歡, 黃秋嬋. 鉛對人體健康的危害效應及其防治途徑. 微量元素與健康研究, 2008, 25(4):62 doi: 10.3969/j.issn.1005-5320.2008.04.026

    Wei Y H, Huang Q C. The toxicological effect of lead on the human health and its measures of preventing. Stud Trace Elem Heal, 2008, 25(4): 62 doi: 10.3969/j.issn.1005-5320.2008.04.026
    [17]
    鄧芰, 羅付香, 吳彥瑜, 等. 鉛在環境中的形態遷移轉化研究進展// 中國環境科學學會2013年學術年會. 昆明, 2013: 1836

    Deng L, Luo F X, Wu Y Y, et al. Research progress of lead morphologic transfer and transformation in the environment// Chinese Society for Environmental Sciences. Kunming, 2013: 1836
    [18]
    黃業豪, 孫景敏, 徐靖, 等. 檸檬酸淋洗修復河南某冶煉廠周邊Pb污染土壤. 礦產保護與利用, 2020, 40(4):35

    Huang Y H, Sun J M, Xu J, et al. Remediation of Pb-polluted soils around a smelter in Henan Province by oscillating washing with citric acid. Conserv Util Miner Resour, 2020, 40(4): 35
    [19]
    Li Z T, Wang L, Wu J Z, et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses. Environ Pollut, 2020, 260: 114098 doi: 10.1016/j.envpol.2020.114098
    [20]
    陳世寶, 朱永官, 楊俊誠. 土壤-植物系統中磷對重金屬生物有效性的影響機制. 環境污染治理技術與設備, 2003(8):1

    Chen S B, Zhu Y G, Yang J C. Mechanism of the effect of phosphorus on bioavailability of heavy metals in soil-plant systems. Tech Equip Environ Pollut Control, 2003(8): 1
    [21]
    Tessier A P, Campbell P, Bisson M X. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 1979, 51(7): 844 doi: 10.1021/ac50043a017
    [22]
    Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils. Int J Environ Anal Chem, 1993, 51(1-4): 231 doi: 10.1080/03067319308027629
    [23]
    李金林. 鉛鋅污染土壤修復治理應用技術研究. 資源節約與環保, 2020(2):53 doi: 10.3969/j.issn.1673-2251.2020.02.052

    Li J L. Study on remediation and treatment of lead-zinc contaminated soil. Resour Econ Environ Prot, 2020(2): 53 doi: 10.3969/j.issn.1673-2251.2020.02.052
    [24]
    Lan L N, Sun X J. Review on the technology and application of lead contaminated soil remediation // Proceedings of the 2015 International Symposium on Material, Energy and Environment Engineering. Changsha City, 2015: 359
    [25]
    El-Hassanin A S, Labib T M, Dobal A T. Potential Pb, Cd, Zn and B contamination of sandy soils after different irrigation periods with sewage effluent. Water Air Soil Pollut, 1993, 66(3-4): 239 doi: 10.1007/BF00479848
    [26]
    Douay F, Pruvot C, Roussel H, et al. Contamination of urban soils in an area of northern France polluted by dust emissions of two smelters. Water Air Soil Pollut, 2008, 188(1-4): 247 doi: 10.1007/s11270-007-9541-7
    [27]
    萬玉山, 韓惠, 沈夢, 等. 鉛污染土壤的電動修復實驗研究. 常州大學學報(自然科學版), 2018, 30(6):66

    Wan Y S, Han H, Shen M, et al. Experimental study on electrokinetic remediation of Pb contaminated soil. J Chang Univ Nat Sci, 2018, 30(6): 66
    [28]
    Dermont G, Bergeron M, Mercier G, et al. Metal-contaminated soils: Remediation practices and treatment technologies. Pract Period Hazard Toxic Radioact Waste Manage, 2008, 12(3): 188 doi: 10.1061/(ASCE)1090-025X(2008)12:3(188)
    [29]
    Yan K H, Dong Z M, Wijayawardena M A A, et al. The source of lead determines the relationship between soil properties and lead bioaccessibility. Environ Pollut, 2019, 246: 53 doi: 10.1016/j.envpol.2018.11.104
    [30]
    李玉雙, 胡曉鈞, 孫鐵珩, 等. 污染土壤淋洗修復技術研究進展. 生態學雜志, 2011, 30(3):596

    Li Y S, Hu X J, Sun T H, et al. Soil washing/Flushing of contaminated soil: A review. Chin J Ecol, 2011, 30(3): 596
    [31]
    Wang Z Z, Wang H B, Wang H J, et al. Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicol Environ Saf, 2020, 203: 110981 doi: 10.1016/j.ecoenv.2020.110981
    [32]
    Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J Hazard Mater, 2008, 152(1): 1 doi: 10.1016/j.jhazmat.2007.10.043
    [33]
    李燕燕. 菜地土壤鉛鎘污染的原位淋洗−固化修復研究[學位論文]. 重慶: 西南大學, 2015

    Li Y Y. Research on In-Situ Remediation of PB, CD Contaminated by Leaching-Immobilization in Vegetable Soil [Dissertation]. Chongqing: Southwest University, 2015
    [34]
    張溪, 周愛國, 甘義群, 等. 金屬礦山土壤重金屬污染生物修復研究進展. 環境科學與技術, 2010, 33(3):106 doi: 10.3969/j.issn.1003-6504.2010.03.024

    Zhang X, Zhou A G, Gan Y Q, et al. Advances in bioremediation technologies of contaminated soils by heavy metal in metallic mines. Environ Sci Technol, 2010, 33(3): 106 doi: 10.3969/j.issn.1003-6504.2010.03.024
    [35]
    Sarwar N, Imran M, Shaheen M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 2017, 171: 710 doi: 10.1016/j.chemosphere.2016.12.116
    [36]
    Gomes M A D C, Hauser-Davis R A, de Souza A N, et al. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf, 2016, 134: 133 doi: 10.1016/j.ecoenv.2016.08.024
    [37]
    Chen W M, Wu C H, James E K, et al. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater, 2008, 151(2-3): 364 doi: 10.1016/j.jhazmat.2007.05.082
    [38]
    Tang Y T, Qiu R L, Zeng X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot, 2009, 66(1): 126 doi: 10.1016/j.envexpbot.2008.12.016
    [39]
    可欣, 李培軍, 鞏宗強, 等. 重金屬污染土壤修復技術中有關淋洗劑的研究進展. 生態學雜志, 2004, 23(5):145 doi: 10.3321/j.issn:1000-4890.2004.05.028

    Ke X, Li P J, Gong Z Q, et al. Advances in Flushing agents used for remediation of heavy metal-contaminated soil. Chin J Ecol, 2004, 23(5): 145 doi: 10.3321/j.issn:1000-4890.2004.05.028
    [40]
    劉仕業, 岳昌盛, 彭犇, 等. 鉻污染毒性土壤清潔修復研究進展與綜合評價. 工程科學學報, 2018, 40(11):1275

    Liu S Y, Yue C S, Peng B, et al. Research progress on remediation technologies of chromium-contaminated soil: A review. Chin J Eng, 2018, 40(11): 1275
    [41]
    許偉偉, 滕玉婷, 任靜華, 等. 不同活化劑對鎘、鉛單一及復合污染土壤的修復效果影響. 環境污染與防治, 2019, 41(8):882

    Xu W W, Teng Y T, Ren J H, et al. Effect of different activators on the remediation of Cd and Pb single and compound contaminated soils. Environ Pollut Control, 2019, 41(8): 882
    [42]
    Chen C L, Tian T, Wang M K, et al. Release of Pb in soils washed with various extractants. Geoderma, 2016, 275: 74 doi: 10.1016/j.geoderma.2016.04.015
    [43]
    Tampouris S, Papassiopi N, Paspaliaris I. Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J Hazard Mater, 2001, 84(2-3): 297 doi: 10.1016/S0304-3894(01)00233-3
    [44]
    王顯海, 劉云國, 曾光明, 等. EDTA溶液修復重金屬污染土壤的效果及金屬的形態變化特征. 環境科學, 2006, 27(5):1008 doi: 10.3321/j.issn:0250-3301.2006.05.035

    Wang X H, Liu Y G, Zeng G M, et al. Extraction of heavy metals from contaminated soils with EDTA and their redistribution of fractions. Environ Sci, 2006, 27(5): 1008 doi: 10.3321/j.issn:0250-3301.2006.05.035
    [45]
    馮靜, 張增強, 李念, 等. 鉛鋅廠重金屬污染土壤的螯合劑淋洗修復及其應用. 環境工程學報, 2015, 9(11):5617 doi: 10.12030/j.cjee.20151177

    Feng J, Zhang Z Q, Li N, et al. Washing of heavy metal contaminated soil around a lead-zinc smelter by several chelating agents and the leached soil utilization. Chin J Environ Eng, 2015, 9(11): 5617 doi: 10.12030/j.cjee.20151177
    [46]
    陳曉婷, 王欣, 陳新. 幾種螯合劑對污染土壤的重金屬提取效率的研究. 江蘇環境科技, 2005, 18(2):9

    Chen X T, Wang X, Chen X. Study on the exaction efficiency of heavy metals by chelates. Jiang Su Environ Sci Technol, 2005, 18(2): 9
    [47]
    Wang Q W, Chen J J, Zheng A H, et al. Dechelation of Cd-EDTA complex and recovery of EDTA from simulated soil-washing solution with sodium sulfide. Chemosphere, 2019, 220(1): 1200
    [48]
    Yang Z H, Zhang S J, Liao Y P, et al. Remediation of heavy metal contamination in calcareous soil by washing with reagents: A column washing. Procedia Environ Sci, 2012, 16: 778 doi: 10.1016/j.proenv.2012.10.106
    [49]
    Papassiopi N, Tambouris S, Kontopoulos A. Removal of Heavy Metals from Calcareous Contaminated Soils by EDTA Leaching. Water Air Soil Pollut, 1999, 109: 1 doi: 10.1023/A:1005089515217
    [50]
    高國龍, 張望, 周連碧, 等. 重金屬污染土壤化學淋洗技術進展. 有色金屬工程, 2013, 3(1):49

    Gao G L, Zhang W, Zhou L B, et al. Progress in chemical leaching of heavy metal contaminated soil. Nonferrous Met Eng, 2013, 3(1): 49
    [51]
    Ke X, Zhang F J, Zhou Y, et al. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching. Chemosphere, 2020, 255: 126690 doi: 10.1016/j.chemosphere.2020.126690
    [52]
    高珂, 朱榮, 鄒華, 等. 超聲強化淋洗修復Pb、Cd、Cu復合污染土壤. 環境工程學報, 2018, 12(8):2328 doi: 10.12030/j.cjee.201801076

    Gao K, Zhu R, Zou H, et al. Remediation of Pb, Cd, Cu contaminated soil by ultrasonic-enhanced leaching. Chin J Environ Eng, 2018, 12(8): 2328 doi: 10.12030/j.cjee.201801076
    [53]
    Zhang H, Gao Y, Xiong H. Removal of heavy metals from polluted soil using the citric acid fermentation broth: A promising washing agent. Environ Sci Pollut Res Int, 2017, 24(10): 9506 doi: 10.1007/s11356-017-8660-y
    [54]
    曾鴻澤. 天然有機酸與表面活性劑修復重金屬鉛、鎘污染土壤的研究[學位論文]. 南昌: 南昌航空大學, 2018

    Zeng H Z. Remediation of Heavy Metals Contaminated by Lead and Cadmium by Natural Organic Acids and Surfactants [Dissertation]. Nanchang: Nanchang Hangkong University, 2018
    [55]
    Li R S, Li L Y. Enhancement of electrokinetic extraction from lead-spiked soils. J Environ Eng, 2000, 126(9): 849 doi: 10.1061/(ASCE)0733-9372(2000)126:9(849)
    [56]
    Huang G Y, Su X J, Rizwan M S, et al. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ Sci Pollut Res Int, 2016, 23(16): 16845 doi: 10.1007/s11356-016-6885-9
    [57]
    吳烈善, 曾東梅, 莫小榮, 等. 不同鈍化劑對重金屬污染土壤穩定化效應的研究. 環境科學, 2015, 36(1):309

    Wu L S, Zeng D M, Mo X R, et al. Immobilization impact of different fixatives on heavy metals contaminated soil. Environ Sci, 2015, 36(1): 309
    [58]
    劉弘禹, 張玉杰, 陳寧怡, 等. 羥基磷灰石表面特性差異對重金屬污染土壤固化修復的影響. 環境化學, 2018, 37(9):1961 doi: 10.7524/j.issn.0254-6108.2017110202

    Liu H Y, Zhang Y J, Chen N Y, et al. Effect of surface characteristics of hydroxyapatite on the remediation passivation effect of heavy metal contaminated soil. Environ Chem, 2018, 37(9): 1961 doi: 10.7524/j.issn.0254-6108.2017110202
    [59]
    Su X J, Zhu J, Fu Q L, et al. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. J Environ Sci, 2015, 28: 64 doi: 10.1016/j.jes.2014.07.022
    [60]
    Wang Y M, Chen T C, Yeh K J, et al. Stabilization of an elevated heavy metal contaminated site. J Hazard Mater, 2001, 88(1): 63 doi: 10.1016/S0304-3894(01)00289-8
    [61]
    王建樂, 謝仕斌, 涂國權, 等. 多種材料對鉛鎘污染農田土壤原位修復效果的研究. 農業環境科學學報, 2019, 38(2):325 doi: 10.11654/jaes.2018-0597

    Wang J L, Xie S B, Tu G Q, et al. Comparison of several amendments for in situ remediation of lead-and cadmium-contaminated farmland soil. J Agro Environ Sci, 2019, 38(2): 325 doi: 10.11654/jaes.2018-0597
    [62]
    Bashir S, Shaaban M, Hussain Q, et al. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil. J Soils Sediments, 2018, 18(9): 2948 doi: 10.1007/s11368-018-1981-8
    [63]
    Uchimiya M, Lima I M, Thomas Klasson K, et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem, 2010, 58(9): 5538 doi: 10.1021/jf9044217
    [64]
    Puga A P, Abreu C A, Melo L C A, et al. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manag, 2015, 159: 86 doi: 10.1016/j.jenvman.2015.05.036
    [65]
    Zhou H B, Meng H B, Zhao L X, et al. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresour Technol, 2018, 258: 279 doi: 10.1016/j.biortech.2018.02.086
    [66]
    戴靜, 劉陽生. 四種原料熱解產生的生物炭對Pb2+和Cd2+的吸附特性研究. 北京大學學報(自然科學版), 2013, 49(6):1075

    Dai J, Liu Y S. Adsorption of Pb2+ and Cd2+ onto biochars derived from pyrolysis of four kinds of biomasses. Acta Sci Nat Univ Pekin, 2013, 49(6): 1075
    [67]
    Teng F Y, Zhang Y X, Wang D Q, et al. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil. J Hazard Mater, 2020, 398: 122977 doi: 10.1016/j.jhazmat.2020.122977
    [68]
    李元杰, 李林, 劉永茂, 等. 鉛鋅礦區土壤重金屬污染MnFe2O4納米微粒修復技術研究. 干旱區資源與環境, 2019, 33(1):101

    Li Y J, Li L, Liu Y M, et al. Remediation of lead-zinc polymetallic mine contaminated soils by MnFe2O4 micro-particles. J Arid Land Resour Environ, 2019, 33(1): 101
    [69]
    趙慶圓, 李小明, 楊麒, 等. 磷酸鹽、腐殖酸與粉煤灰聯合鈍化處理模擬鉛鎘污染土壤. 環境科學, 2018, 39(1):389

    Zhao Q Y, Li X M, Yang Q, et al. Passivation of simulated Pb-and Cd-contaminated soil by applying combined treatment of phosphate, humic acid, and fly ash. Environ Sci, 2018, 39(1): 389
    [70]
    張靜靜, 趙永芹, 王菲菲, 等. 膨潤土、褐煤及其混合添加對鉛污染土壤鈍化修復效應研究. 生態環境學報, 2019, 28(2):395

    Zhang J J, Zhao Y Q, Wang F F, et al. Immobilization and remediation of Pb contaminated soil treated with bentonite, lignite and their mixed addition. Ecol Environ Sci, 2019, 28(2): 395
    [71]
    Basta N T, McGowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut, 2004, 127(1): 73 doi: 10.1016/S0269-7491(03)00250-1
    [72]
    Guo W, Zhang H Z, Yin X X, et al. Comparison of single and compound washing of remediating Pb contaminated soil of non-ferrous smelters. Appl Ecol Env Res, 2020, 18(1): 901 doi: 10.15666/aeer/1801_901912
    [73]
    李雄威, 劉正明, 羅元喜, 等. 生物炭修復高濃度鉛鋅污染土的試驗研究. 工業建筑, 2017, 47(9):101

    Li X W, Liu Z M, Luo Y X, et al. Research on biochar for remedying heavy metal contaminated soils with high concentration of lead and zinc contamination. Ind Constr, 2017, 47(9): 101
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(9)

    Article views (1594) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频