<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
WANG Yi-ming, WANG Zhi-kai, WU Ai-xiang, PENG Qing-song, LI Jian-qiu. Thermodynamic model of the hydration reaction of hemihydrate phosphogypsum based on the temperature effect[J]. Chinese Journal of Engineering, 2022, 44(11): 1811-1820. doi: 10.13374/j.issn2095-9389.2021.03.30.003
Citation: WANG Yi-ming, WANG Zhi-kai, WU Ai-xiang, PENG Qing-song, LI Jian-qiu. Thermodynamic model of the hydration reaction of hemihydrate phosphogypsum based on the temperature effect[J]. Chinese Journal of Engineering, 2022, 44(11): 1811-1820. doi: 10.13374/j.issn2095-9389.2021.03.30.003

Thermodynamic model of the hydration reaction of hemihydrate phosphogypsum based on the temperature effect

doi: 10.13374/j.issn2095-9389.2021.03.30.003
More Information
  • Corresponding author: E-mail: ustbwzk@163.com
  • Received Date: 2021-03-30
    Available Online: 2021-05-17
  • Publish Date: 2022-11-01
  • Hemihydrate phosphogypsum (HPG), as a cementing material for mine filling, will spontaneously transform into phosphogypsum (PG) in the stockpiling state. The gelling activity decreases, and meeting the requirements of mechanical properties required for long-distance mine filling becomes difficult. The key measure in expanding the industrial application radius of HPG as a filling cementitious material is the prevention of the spontaneous conversion of HPG to PG. In-depth research on the conversion process of HPG in the storage state is required to achieve a breakthrough in the HPG resource utilization technology. In the storage process, the HPG chemical reaction will release the heat of hydration, causing the temperature and chemical fields in the system to interact with each other and promote the conversion of HPG to PG. Therefore, the HPG hydration heat release process is accurately calculated, analyzed, and simulated. This is a prerequisite to effectively inhibit the conversion of HPG. This article seeks a model of the heat release of the HPG hydration reaction during the storage process to understand the change of its gelation performance and guide on-site industrial applications. The monitoring of the free water mass fraction and the temperature of HPG stacks with initial temperatures of 35 °C, 40 °C, 60 °C, and 80 °C reveals that the HPG free water mass fraction change law conforms to the first-order reaction kinetic model. Based on thermodynamics and chemical reaction kinetics, a thermal kinetic model of the HPG hydration reaction on the relationship between the storage temperature and time is proposed. Using the COMSOL Multiphysics numerical simulation software, the HPG hydration reaction thermokinetic equation was then embedded in the heat transfer and ODE modules, and the HPG reactor temperature was numerically simulated. The simulated reactor temperature curve was more consistent with experimental results, and the reliability of the proposed model was verified. This model can provide guidance for the later design of the delaying HPG conversion plan and has very important practical significance for the promotion and application of HPG.

     

  • loading
  • [1]
    楊林, 曹建新, 劉亞明. 半水磷石膏的礦物學特征. 巖石礦物學雜志, 2015, 34(6):827 doi: 10.3969/j.issn.1000-6524.2015.06.005

    Yang L, Cao J X, Liu Y M. Mineralogical characteristics of hemi-hydrate phosphogypsum. Acta Petrol et Mineral, 2015, 34(6): 827 doi: 10.3969/j.issn.1000-6524.2015.06.005
    [2]
    王貽明, 王志凱, 吳愛祥, 等. 新型膠凝充填材料制備及固化機理分析. 金屬礦山, 2018(6):20

    Wang Y M, Wang Z K, Wu A X, et al. Preparation of new cementitious backfilling material and its curing mechanism analysis. Met Mine, 2018(6): 20
    [3]
    蘭文濤, 吳愛祥, 王貽明, 等. 半水磷石膏充填強度影響因素試驗. 哈爾濱工業大學學報, 2019, 51(8):128 doi: 10.11918/j.issn.0367-6234.201804082

    Lan W T, Wu A X, Wang Y M, et al. Experimental study on influencing factors of the filling strength of hemihydrate phosphogypsum. J Harbin Inst Technol, 2019, 51(8): 128 doi: 10.11918/j.issn.0367-6234.201804082
    [4]
    閻培渝, 鄭峰. 水泥基材料的水化動力學模型. 硅酸鹽學報, 2006, 34(5):555 doi: 10.3321/j.issn:0454-5648.2006.05.009

    Yan P Y, Zheng F. Kinetics model for the hydration mechanism of cementitious materials. J Chin Ceram Soc, 2006, 34(5): 555 doi: 10.3321/j.issn:0454-5648.2006.05.009
    [5]
    李林香, 謝永江, 馮仲偉, 等. 水泥水化機理及其研究方法. 混凝土, 2011(6):76

    Li L X, Xie Y J, Feng Z W, et al. Cement hydration mechanism and research methods. Concrete, 2011(6): 76
    [6]
    韓方暉, 劉娟紅, 閻培渝. 溫度對水泥-礦渣復合膠凝材料水化的影響. 硅酸鹽學報, 2016, 44(8):1071

    Han F H, Liu J H, Yan P Y. Effect of temperature on hydration of composite binder containing slag. J Chin Ceram Soc, 2016, 44(8): 1071
    [7]
    呂全紅, 肖蓮珍. 基于水化動力學模型的水泥基材料溫度效應. 武漢工程大學學報, 2020, 42(4):434

    Lü Q H, Xiao L Z. Temperature effect of cement-based materials based on hydration kinetics model. J Wuhan Inst Technol, 2020, 42(4): 434
    [8]
    Ulm F J, Coussy O. Modeling of thermochemomechanical couplings of concrete at early ages. J Eng Mech, 1995, 121(7): 785 doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
    [9]
    Suzuki M, Fukuura N, Takeda H, et al. Establishment of coupled analysis of interaction between structural deterioration and reinforcement corrosion by salt damage. J Adv Concr Technol, 2016, 14(9): 559 doi: 10.3151/jact.14.559
    [10]
    Gawin D, Pesavento F, Schrefler B A. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. Int J Numer Meth Engng, 2006, 67(3): 299
    [11]
    馮楚橋, 余曉敏, 常曉林, 等. 混凝土水化化學反應動力學模型的推導及應用. 中國農村水利水電, 2019(1):152 doi: 10.3969/j.issn.1007-2284.2019.01.029

    Feng C Q, Yu X M, Chang X L, et al. The deduction and application of a hydration model for concrete based on chemical reaction kinetics. China Rural Water Hydropower, 2019(1): 152 doi: 10.3969/j.issn.1007-2284.2019.01.029
    [12]
    Liu S H, Wang L, Gao Y X, et al. Influence of fineness on hydration kinetics of supersulfated cement. Thermochimica Acta, 2015, 605: 37 doi: 10.1016/j.tca.2015.02.013
    [13]
    Neusinger R, Drach V, Ebert H P, et al. Computer simulations that illustrate the heat balance of landfills. Int J Thermophys, 2005, 26(2): 519 doi: 10.1007/s10765-005-4513-x
    [14]
    王志凱, 王貽明, 吳愛祥, 等. 堆存溫度對半水磷石膏膠凝性能影響. 工程科學學報, 2022, 44(5):840

    Wang Z K, Wang Y M, Wu A X, et al. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum. Chin J Eng, 2022, 44(5): 840
    [15]
    Liu X H, Zhang C, Chang X L, et al. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Appl Therm Eng, 2015, 78: 449 doi: 10.1016/j.applthermaleng.2014.12.050
    [16]
    楊顯萬, 何藹平, 袁寶州. 高溫水溶液熱力學數據計算手冊. 北京: 冶金工業出版社, 1983

    Yang X W, He A P, Yuan B C. Manual for the Calculation of Thermodynamic Data in High Temperature. Beijing: Metallurgical Industry Press, 1983
    [17]
    李顯波. 高強α半水磷石膏晶形調控及水化硬化性能研究[學位論文]. 貴陽: 貴州大學, 2019

    Li X B. Crystal Morphology Control and Hydration Hardening Properties of High Strength Α-Hemihydrate Phosphogypsum [Dissertation]. Guiyang: Guizhou University, 2019
    [18]
    洪清揚. 探析影響化學反應速率的因素. 廣州化工, 2017, 45(17):201 doi: 10.3969/j.issn.1001-9677.2017.17.072

    Hong Q Y. Study on influence factors of rate of chemical reaction. Guangzhou Chem Ind, 2017, 45(17): 201 doi: 10.3969/j.issn.1001-9677.2017.17.072
    [19]
    鄭旴, 陳澤斌. 城市生活垃圾填埋處置中的溫度-化學耦合作用探討. 昆明學院學報, 2015, 37(3):77

    Zheng X, Chen Z B. Exploration into temperature-chemical coupling effect in landfill disposal of household rubbish in urban area. J Kunming Univ, 2015, 37(3): 77
    [20]
    楊軍. 城市生活垃圾填埋處置中的溫度-化學耦合作用研究[學位論文]. 成都: 西南交通大學, 2007

    Yang J. A Study of Coupled Temperature and Chemical Processes in Municiple Solid Waste’s Landfill [Dissertation]. Chengdu: Southwest Jiaotong University, 2007
    [21]
    肖衍繁, 李文斌. 物理化學. 2版. 天津: 天津大學出版社, 2004

    Xiao Y F, Li W B. Physical Chemistry. 2nd Ed. Tianjin: Tianjin University Press, 2004
    [22]
    趙學莊. 化學反應動力學原理. 北京: 高等教育出版社, 1984

    Zhao X Z. Principle of Chemical Reaction Dynamics. Beijing: Higher Education Press, 1984
    [23]
    Zhang Z X, Guo F, Song W, et al. Empirical correction of kinetic model for polymer thermal reaction process based on first order reaction kinetics. Chin J Chem Eng, 2021, 38: 132 doi: 10.1016/j.cjche.2020.09.023
    [24]
    Reddy M G, Naveen Kumar R, Prasannakumara B C, et al. Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy. Commun Theor Phys, 2021, 73(4): 045002 doi: 10.1088/1572-9494/abdaa5
    [25]
    楊林. 半水磷石膏礦物學特征及膠凝性能變化行為[學位論文]. 貴陽: 貴州大學, 2016

    Yang L. Evolution of Mineralogical Characteristics and Gelling Properties of Hemi-Hydrate Phosphogypsum [Dissertation]. Guiyang: Guizhou University, 2016
    [26]
    王勇, 吳愛祥, 王洪江, 等. 初始溫度條件下全尾膠結膏體損傷本構模型. 工程科學學報, 2017, 39(1):31

    Wang Y, Wu A X, Wang H J, et al. Damage constitutive model of cemented tailing paste under initial temperature effect. Chin J Eng, 2017, 39(1): 31
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (566) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频