Citation: | SHEN Wei, SUN Li-juan, LI Chang-rong, YANG Zhan-bing, WANG Fu-ming. Solution treatment effect on precipitates, microstructure, and properties of S32707 hyper-duplex stainless steel[J]. Chinese Journal of Engineering, 2021, 43(10): 1339-1345. doi: 10.13374/j.issn2095-9389.2021.03.25.002 |
[1] |
豐涵, 周曉玉, 劉虎, 等. 特超級雙相不銹鋼的發展現狀及趨勢. 鋼鐵研究學報, 2015, 27(4):1
Feng H, Zhou X Y, Liu H, et al. Development and trend of hyper duplex stainless steels. J Iron Steel Res, 2015, 27(4): 1
|
[2] |
Chail G, Kangas P. Super and hyper duplex stainless steels: structures, properties and applications. Procedia Struct Integr, 2016, 2: 1755 doi: 10.1016/j.prostr.2016.06.221
|
[3] |
吳玖. 雙相不銹鋼. 北京: 冶金工業出版社, 1999
Wu J. Duplex Stainless Steel. Beijing: Metallurgical Industry Press, 1999
|
[4] |
Yamamoto R, Yakuwa H, Miyasaka M, et al. Effects of the α/γ-phase ratio on the corrosion behavior of cast duplex stainless steel. Corrosion, 2020, 76(9): 815 doi: 10.5006/3464
|
[5] |
Fargas G, Anglada M, Mateo A. Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel. J Mater Process Technol, 2009, 209(4): 1770 doi: 10.1016/j.jmatprotec.2008.04.026
|
[6] |
Chan K W, Tjong S C. Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels. Materials (Basel)
|
[7] |
He L, Wirian L, Singh P M. Effects of isothermal aging on the microstructure evolution and pitting corrosion resistance of lean duplex stainless steel UNS S32003. Metall Mater Trans A, 2019, 50(5): 2103 doi: 10.1007/s11661-019-05189-x
|
[8] |
Zhang B B, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature. Mater Charact, 2017, 129: 31 doi: 10.1016/j.matchar.2017.04.018
|
[9] |
Ebrahimi N, Momeni M, Moayed M H, et al. Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel. Corros Sci, 2011, 53(2): 637 doi: 10.1016/j.corsci.2010.10.009
|
[10] |
馮志慧, 李建興, 李靜媛, 等. 鑄坯取樣位置對經濟型雙相不銹鋼2101熱塑性的影響. 工程科學學報, 2017, 39(9):1364
Feng Z H, Li J X, Li J Y, et al. Influence of the sample position of the cast on the thermoplasticity of lean duplex stainless steel 2101. Chin J Eng, 2017, 39(9): 1364
|
[11] |
Shin B H, Kim D, Park S, et al. Precipitation condition and effect of volume fraction on corrosion properties of secondary phase on casted super-duplex stainless steel UNS S32750. Anti Corros Methods Mater, 2019, 66(1): 61 doi: 10.1108/ACMM-06-2018-1958
|
[12] |
徐見平, 吳漢民, 湯磊, 等. 幾種典型雙相不銹鋼組織及性能特點及其對加工過程的影響 // 2018年第六屆中國國際雙相不銹鋼大會. 北京, 2018: 52
Xu J P, Wu H M, Tang L, et al. The microstructure and performance features of typical duplex stainless steels and their impact on fabrication process // The 6th China International Duplex Stainless Steel Conference 2018. Beijing, 2018: 52
|
[13] |
黃盛, 宋志剛, 鄭文杰, 等. 固溶處理對00Cr27Ni7Mo5N不銹鋼的組織及力學性能的影響. 鋼鐵, 2011, 46(12):71
Huang S, Song Z G, Zheng W J, et al. Influence of solution temperature on microstructure and mechanical properties of 00Cr27Ni7Mo5N. Iron Steel, 2011, 46(12): 71
|
[14] |
Shen W, Wang F M, Yang Z B, et al. Effect of ferrite proportion and precipitates on dual-phase corrosion of S32750 super duplex stainless steel with different annealing temperatures. Steel Res Int, 2021: 2000568
|
[15] |
徐海健, 胡萬卿, 康超, 等. 高溫熱處理對節約型2101雙相不銹鋼組織性能的影響. 材料熱處理學報, 2021, 42(2):74
Xu H J, Hu W Q, Kang C, et al. Effect of high temperature heat treatment on microstructure and properties of lean duplex stainless steel 2101. Trans Mater Heat Treat, 2021, 42(2): 74
|
[16] |
Rajkumar M, Babu S P K, Nagaraj T A. Intergranular corrosion characteristics of niobium stabilized 27Cr?7Ni?Mo?W?N cast hyper duplex stainless steel. Mater Today:Proc, 2020, 27: 2551 doi: 10.1016/j.matpr.2019.10.134
|
[17] |
Li H B, Zhou E Z, Zhang D W, et al. Microbiologically influenced corrosion of 2707 hyper-duplex stainless steel by marine pseudomonas aeruginosa biofilm. Sci Rep, 2016, 6: 20190 doi: 10.1038/srep20190
|
[18] |
Kim D H, Kim N H, Lee H W. Corrosion and cracking characteristics upon aging of hyper duplex stainless steel weld. Mater Sci Technol, 2020, 36(7): 783 doi: 10.1080/02670836.2020.1743575
|
[19] |
Marques I J, Silva F J, Santos T F A. Rapid precipitation of intermetallic phases during isothermal treatment of duplex stainless steel joints produced by friction stir welding. J Alloys Compd, 2020, 820: 153170 doi: 10.1016/j.jallcom.2019.153170
|
[20] |
Zhang D, Wen P, Yin B Z, et al. Temperature evolution, phase ratio and corrosion resistance of duplex stainless steels treated by laser surface heat treatment. J Manuf Process, 2021, 62: 99 doi: 10.1016/j.jmapro.2020.12.040
|
[21] |
Pettersson N, Pettersson R F A, Wessman S. Precipitation of chromium nitrides in the super duplex stainless steel 2507. Metall Mater Trans A, 2015, 46(3): 1062 doi: 10.1007/s11661-014-2718-y
|
[22] |
Bettini E, Kivis?kk U, Leygraf C, et al. Study of corrosion behavior of a 2507 super duplex stainless steel: Influence of quenched-in and isothermal nitrides. Int J Electrochem Sci, 2014, 9(1): 61
|
[23] |
陳雨來, 張泰然, 王一德, 等. O, N和Ni含量對0Cr25Ni7Mo4N雙相不銹鋼熱軋塑性的影響. 金屬學報, 2014, 50(8):905 doi: 10.11900/0412.1961.2014.00057
Chen Y L, Zhang T R, Wang Y D, et al. Effects of O, N and Ni contents on hot plasticity of 0Cr25Ni7Mo4N duplex stainless steel. Acta Metall Sin, 2014, 50(8): 905 doi: 10.11900/0412.1961.2014.00057
|
[24] |
Deng B, Jiang Y M, Gao J, et al. Effect of annealing treatment on microstructure evolution and the associated corrosion behavior of a super-duplex stainless steel. J Alloys Compd, 2010, 493(1-2): 461 doi: 10.1016/j.jallcom.2009.12.127
|
[25] |
梁田. 核電用雙相不銹鋼中σ相析出機制研究[學位論文]. 北京: 中國科學院大學, 2013
Liang T. The Precipitation Mechanism of σ Phase in Duplex Stainless Steel for Nuclear Power Station [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2013
|
[26] |
白青青, 張志宏. 固溶處理溫度對2507超級雙相不銹鋼相比例及力學性能的影響. 金屬熱處理, 2019, 44(9):123
Bai Q Q, Zhang Z H. Effect of solution treatment temperature on phase ration and mechanical properties of 2507 super duplex stainless steel. Heat Treat Met, 2019, 44(9): 123
|
[27] |
宋志剛, 陳斌, 鄭文杰, 等. 固溶溫度對00Cr22Ni5 Mo3N鋼組織及力學性能的影響. 鋼鐵研究學報, 2004, 16(6):47 doi: 10.3321/j.issn:1001-0963.2004.06.010
Song Z G, Chen B, Zheng W J, et al. Influence of solution temperature on microstructure and mechanical property of 00Cr22Ni5Mo3N. J Iron Steel Res, 2004, 16(6): 47 doi: 10.3321/j.issn:1001-0963.2004.06.010
|
[28] |
Ha H Y, Lee T H, Lee C G, et al. Understanding the relation between pitting corrosion resistance and phase fraction of S32101 duplex stainless steel. Corros Sci, 2019, 149: 226 doi: 10.1016/j.corsci.2019.01.001
|
[29] |
鄭建超, 潘超, 張建濤, 等. Mn對2205雙相不銹鋼耐點蝕性能的影響. 工程科學學報, 2019, 41(2):246
Zheng J C, Pan C, Zhang J T, et al. Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32205. Chin J Eng, 2019, 41(2): 246
|
[30] |
Raj P N, Navaneethkrishnan P K, Sekar K, et al. Comparative study of mechanical, corrosion and erosion—corrosion properties of cast hyper-duplex and super-duplex stainless steels. Int J Miner Metall Mater, 2020, 27(7): 954 doi: 10.1007/s12613-020-1984-5
|
[31] |
Zhu M, Zhang Q, Yuan Y F, et al. Effect of microstructure and passive film on corrosion resistance of 2507 super duplex stainless steel prepared by different cooling methods in simulated marine environment. Int J Miner Metall Mater, 2020, 27(8): 1100 doi: 10.1007/s12613-020-2094-0
|
[32] |
朱敏, 朱濤, 陳明, 等. 2507雙相不銹鋼在SO2污染模擬海水中的腐蝕行為. 工程科學學報, 2018, 40(5):587
Zhu M, Zhu T, Chen M, et al. Corrosion behavior of 2507 duplex stainless steel in simulated SO2-Polluted seawater. Chin J Eng, 2018, 40(5): 587
|