<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LIU Hong-li, WU Sen, WEI Gui-ying, LI Xin, GAO Xiao-nan. Click-through rate prediction model based on a deep neural network[J]. Chinese Journal of Engineering, 2022, 44(11): 1917-1925. doi: 10.13374/j.issn2095-9389.2021.03.23.002
Citation: LIU Hong-li, WU Sen, WEI Gui-ying, LI Xin, GAO Xiao-nan. Click-through rate prediction model based on a deep neural network[J]. Chinese Journal of Engineering, 2022, 44(11): 1917-1925. doi: 10.13374/j.issn2095-9389.2021.03.23.002

Click-through rate prediction model based on a deep neural network

doi: 10.13374/j.issn2095-9389.2021.03.23.002
More Information
  • Corresponding author: E-mail: weigy@manage.ustb.edu.cn
  • Received Date: 2021-03-23
    Available Online: 2021-08-12
  • Publish Date: 2022-11-01
  • The click-through rate (CTR) prediction task is to estimate the probability that a user will click an item according to the features of user, item, and contexts. At present, CTR prediction has become a common and indispensable task in the field of e-commerce. Higher accuracy of CTR prediction results conduces to present more accurate and personalized results for recommendation systems and search engines to increase users’ actual CTR of items and bring more economic benefits. More researchers used a deep neural network (DNN) to solve the CTR prediction problem under the background of big data technology in recent years. However, there are a few models that can process time series data and fully consider the context information of users’ history effectively and efficiently. CTR prediction models based on a DNN learn users’ interests from their history; however, most of the existing models regard user interest, ignoring the differences between the long-term and short-term interests. This paper proposes a CTR prediction model named Long- and Short-Term Interest Network (LSTIN) to fully use the context information and order information of user history records. This use will help improve the accuracy and training efficiency of the CTR prediction model. Based on the attention mechanism, the transformer and activation unit structure are used to model long-term and short-term user interests. The latter is processed using the recurrent and convolutional neural networks further. Eventually, a fully-connected neural network is applied for prediction. Different from DeepFM and Deep Interest Network (DIN) in experiments on an Amazon public dataset, LSTIN achieves modeling with context and order information of user history. The AUC of LSTIN is 85.831%, which is 1.154% higher than that of BaseModel and 0.476% higher than that of DIN. Besides, LSTIN achieves distinguishing the long-term and short-term interests of users, which improves the performance and maintains the training efficiency of the CTR prediction model.

     

  • loading
  • [1]
    沈學利, 李子健, 赫辰皓. 基于評分填充與信任信息的混合推薦算法. 計算機應用, 2020, 40(10):2789

    Shen X L, Li Z J, He C H. Hybrid recommendation algorithm based on rating filling and trust information. J Comput Appl, 2020, 40(10): 2789
    [2]
    宋洪慶, 都書一, 周園春, 等. 油氣資源開發的大數據智能平臺及應用分析. 工程科學學報, 2021, 43(2):179

    Song H Q, Du S Y, Zhou Y C, et al. Big data intelligent platform and application analysis for oil and gas resource development. Chin J Eng, 2021, 43(2): 179
    [3]
    Tao Z L, Wang X, He X N, et al. HoAFM: A high-order attentive factorization machine for CTR prediction. Inf Process Manag, 2019, 57(6): 102076
    [4]
    周傲英, 周敏奇, 宮學慶. 計算廣告: 以數據為核心的Web綜合應用. 計算機學報, 2011, 34(10):1805 doi: 10.3724/SP.J.1016.2011.01805

    Zhou A Y, Zhou M Q, Gong X Q. Computational advertising: A data-centric comprehensive web application. Chin J Comput, 2011, 34(10): 1805 doi: 10.3724/SP.J.1016.2011.01805
    [5]
    劉夢娟, 曾貴川, 岳威, 等. 面向展示廣告的點擊率預測模型綜述. 計算機科學, 2019, 46(7):38 doi: 10.11896/j.issn.1002-137X.2019.07.006

    Liu M J, Zeng G C, Yue W, et al. Review on click-through rate prediction models for display advertising. Comput Sci, 2019, 46(7): 38 doi: 10.11896/j.issn.1002-137X.2019.07.006
    [6]
    Richardson M, Dominowska E, Ragno R. Predicting clicks: Estimating the click through rate for new ADs // Proceedings of the 16th International Conference on World Wide Web. Alberta, 2007: 521
    [7]
    Chen J X, Sun B G, Li H, et al. Deep CTR prediction in display advertising // Proceedings of the 24th ACM international conference on Multimedia. Amsterdam, 2016: 811
    [8]
    Rendle S. Factorization Machines // 2010 IEEE International Conference on Data Mining. Berlin, 2010: 995
    [9]
    Zhang W N, Du T M, Wang J. Deep learning over multi-field categorical data: A case study on user response prediction // Proceedings of European Conference on Information Retrieval. Padua, 2016: 45
    [10]
    Qu Y R, Cai H, Ren K, et al. Product-based neural networks for user response prediction // 2016 IEEE 16th International Conference on Data Mining. Barcelona, 2016: 1149
    [11]
    Cheng H T, Koc L, Harmsen J, et al. Wide & Deep learning for recommender systems // Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston, 2016: 7
    [12]
    Guo H F, Tang R M, Ye Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction // Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, 2017: 1725
    [13]
    Zhou G R, Song C R, Zhu X Q, et al. Deep interest network for click-through rate prediction // Proceedings of KDD International Conference on Knowledge Discovery & Data Mining. London, 2018: 1059
    [14]
    Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computat, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
    [15]
    程艷, 堯磊波, 張光河, 等. 基于注意力機制的多通道CNN和BiGRU的文本情感傾向性分析. 計算機研究與發展, 2020, 57(12):2583 doi: 10.7544/issn1000-1239.2020.20190854

    Cheng Y, Yao L B, Zhang G H, et al. Text sentiment orientation analysis of multi-channels CNN and BiGRU based on attention mechanism. J Comput Res Dev, 2020, 57(12): 2583 doi: 10.7544/issn1000-1239.2020.20190854
    [16]
    Cho K, Merri?nboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation // Proceedings of the Conference on Empirical Methods on Natural Language Processing. Doha, 2014: 1724
    [17]
    代建華, 鄧育彬. 基于情感膨脹門控CNN的情感-原因對提取. 數據分析與知識發現, 2020, 4(8):98

    Dai J H, Deng Y B. Extracting emotion-cause pairs based on emotional dilation gated CNN. Data Anal Knowl Discov, 2020, 4(8): 98
    [18]
    Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences // Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, 2014: 655
    [19]
    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need // Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, 2017: 6000
    [20]
    Jiang D, Xu R B, Xu X, et al. Multi-view feature transfer for click-through rate prediction. Inf Sci, 2021, 546: 961 doi: 10.1016/j.ins.2020.09.005
    [21]
    余傳明, 馮博琳, 安璐. 基于深度表示學習的跨領域情感分析. 數據分析與知識發現, 2017, 1(7):73

    Yu C M, Feng B L, An L. Sentiment analysis in cross-domain environment with deep representative learning. Data Anal Knowl Discov, 2017, 1(7): 73
    [22]
    張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372

    Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372
    [23]
    Kim Y. Convolutional neural networks for sentence classification // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, 2014: 1746
    [24]
    Zhang Y, Wallace B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. Comput Sci, https://arxiv.org/pdf/1510.03820.pdf
    [25]
    Kingma D P, Ba J. Adam: A method for stochastic optimization // International Conference on Learning Representations. San Diego, 2015
    [26]
    李詒靖, 郭海湘, 李亞楠, 等. 一種基于Boosting的集成學習算法在不均衡數據中的分類. 系統工程理論與實踐, 2016, 36(1):189

    Li Y J, Guo H X, Li Y N, et al. A boosting based ensemble learning algorithm in imbalanced data classification. Syst Eng Theory Pract, 2016, 36(1): 189
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (1063) PDF downloads(160) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频