Citation: | LIU Hong-li, WU Sen, WEI Gui-ying, LI Xin, GAO Xiao-nan. Click-through rate prediction model based on a deep neural network[J]. Chinese Journal of Engineering, 2022, 44(11): 1917-1925. doi: 10.13374/j.issn2095-9389.2021.03.23.002 |
[1] |
沈學利, 李子健, 赫辰皓. 基于評分填充與信任信息的混合推薦算法. 計算機應用, 2020, 40(10):2789
Shen X L, Li Z J, He C H. Hybrid recommendation algorithm based on rating filling and trust information. J Comput Appl, 2020, 40(10): 2789
|
[2] |
宋洪慶, 都書一, 周園春, 等. 油氣資源開發的大數據智能平臺及應用分析. 工程科學學報, 2021, 43(2):179
Song H Q, Du S Y, Zhou Y C, et al. Big data intelligent platform and application analysis for oil and gas resource development. Chin J Eng, 2021, 43(2): 179
|
[3] |
Tao Z L, Wang X, He X N, et al. HoAFM: A high-order attentive factorization machine for CTR prediction. Inf Process Manag, 2019, 57(6): 102076
|
[4] |
周傲英, 周敏奇, 宮學慶. 計算廣告: 以數據為核心的Web綜合應用. 計算機學報, 2011, 34(10):1805 doi: 10.3724/SP.J.1016.2011.01805
Zhou A Y, Zhou M Q, Gong X Q. Computational advertising: A data-centric comprehensive web application. Chin J Comput, 2011, 34(10): 1805 doi: 10.3724/SP.J.1016.2011.01805
|
[5] |
劉夢娟, 曾貴川, 岳威, 等. 面向展示廣告的點擊率預測模型綜述. 計算機科學, 2019, 46(7):38 doi: 10.11896/j.issn.1002-137X.2019.07.006
Liu M J, Zeng G C, Yue W, et al. Review on click-through rate prediction models for display advertising. Comput Sci, 2019, 46(7): 38 doi: 10.11896/j.issn.1002-137X.2019.07.006
|
[6] |
Richardson M, Dominowska E, Ragno R. Predicting clicks: Estimating the click through rate for new ADs // Proceedings of the 16th International Conference on World Wide Web. Alberta, 2007: 521
|
[7] |
Chen J X, Sun B G, Li H, et al. Deep CTR prediction in display advertising // Proceedings of the 24th ACM international conference on Multimedia. Amsterdam, 2016: 811
|
[8] |
Rendle S. Factorization Machines // 2010 IEEE International Conference on Data Mining. Berlin, 2010: 995
|
[9] |
Zhang W N, Du T M, Wang J. Deep learning over multi-field categorical data: A case study on user response prediction // Proceedings of European Conference on Information Retrieval. Padua, 2016: 45
|
[10] |
Qu Y R, Cai H, Ren K, et al. Product-based neural networks for user response prediction // 2016 IEEE 16th International Conference on Data Mining. Barcelona, 2016: 1149
|
[11] |
Cheng H T, Koc L, Harmsen J, et al. Wide & Deep learning for recommender systems // Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston, 2016: 7
|
[12] |
Guo H F, Tang R M, Ye Y M, et al. DeepFM: A factorization-machine based neural network for CTR prediction // Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, 2017: 1725
|
[13] |
Zhou G R, Song C R, Zhu X Q, et al. Deep interest network for click-through rate prediction // Proceedings of KDD International Conference on Knowledge Discovery & Data Mining. London, 2018: 1059
|
[14] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computat, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
|
[15] |
程艷, 堯磊波, 張光河, 等. 基于注意力機制的多通道CNN和BiGRU的文本情感傾向性分析. 計算機研究與發展, 2020, 57(12):2583 doi: 10.7544/issn1000-1239.2020.20190854
Cheng Y, Yao L B, Zhang G H, et al. Text sentiment orientation analysis of multi-channels CNN and BiGRU based on attention mechanism. J Comput Res Dev, 2020, 57(12): 2583 doi: 10.7544/issn1000-1239.2020.20190854
|
[16] |
Cho K, Merri?nboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation // Proceedings of the Conference on Empirical Methods on Natural Language Processing. Doha, 2014: 1724
|
[17] |
代建華, 鄧育彬. 基于情感膨脹門控CNN的情感-原因對提取. 數據分析與知識發現, 2020, 4(8):98
Dai J H, Deng Y B. Extracting emotion-cause pairs based on emotional dilation gated CNN. Data Anal Knowl Discov, 2020, 4(8): 98
|
[18] |
Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences // Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, 2014: 655
|
[19] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need // Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, 2017: 6000
|
[20] |
Jiang D, Xu R B, Xu X, et al. Multi-view feature transfer for click-through rate prediction. Inf Sci, 2021, 546: 961 doi: 10.1016/j.ins.2020.09.005
|
[21] |
余傳明, 馮博琳, 安璐. 基于深度表示學習的跨領域情感分析. 數據分析與知識發現, 2017, 1(7):73
Yu C M, Feng B L, An L. Sentiment analysis in cross-domain environment with deep representative learning. Data Anal Knowl Discov, 2017, 1(7): 73
|
[22] |
張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372
Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372
|
[23] |
Kim Y. Convolutional neural networks for sentence classification // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, 2014: 1746
|
[24] |
Zhang Y, Wallace B. A sensitivity analysis of (and practitioners’ guide to) convolutional neural networks for sentence classification. Comput Sci, https://arxiv.org/pdf/1510.03820.pdf
|
[25] |
Kingma D P, Ba J. Adam: A method for stochastic optimization // International Conference on Learning Representations. San Diego, 2015
|
[26] |
李詒靖, 郭海湘, 李亞楠, 等. 一種基于Boosting的集成學習算法在不均衡數據中的分類. 系統工程理論與實踐, 2016, 36(1):189
Li Y J, Guo H X, Li Y N, et al. A boosting based ensemble learning algorithm in imbalanced data classification. Syst Eng Theory Pract, 2016, 36(1): 189
|