Citation: | ZHANG Pei-kun, ZHANG Zhen-wei, WANG Li. Numerical analysis of the novel lime calcination process for carbon dioxide capture[J]. Chinese Journal of Engineering, 2022, 44(11): 1978-1987. doi: 10.13374/j.issn2095-9389.2021.03.22.002 |
[1] |
郭漢杰. 活性石灰生產理論與工藝. 北京: 化學工業出版社, 2014
Guo H J. Theory and Technology of Active Lime Production. Beijing: Chemical Industry Press, 2014
|
[2] |
Rong W J, Li B K, Qi F S, et al. Energy and exergy analysis of an annular shaft kiln with opposite burners. Appl Therm Eng, 2017, 119: 629 doi: 10.1016/j.applthermaleng.2017.03.090
|
[3] |
Hallak B, Herz F, Specht E, et al. Simulation of limestone calcination in normal shaft kilns-mathematical model. ZKG Int, 2015, 68(9): 66
|
[4] |
An R, Yu B, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044
|
[5] |
姜娟娟, 董凱, 朱榮, 等. 二氧化碳綠色潔凈煉鋼技術及應用. 工程科學學報.https://doi.org/10.13374/j.issn2095-9389.2021.09.23.002
Jiang J J, Dong K, Zhu R, et al. Carbon dioxide green and clean steelmaking technology and its application. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2021.09.23.002
|
[6] |
Shan Y L, Liu Z, Guan D B. CO2 emissions from China’s lime industry. Appl Energy, 2016, 166: 245 doi: 10.1016/j.apenergy.2015.04.091
|
[7] |
國家統計局. 中國統計年鑒. 中國統計出版社, 2019
National Bureau of Statistic. China Statistical Year Book. Beijing: China Statistics Press, 2019
|
[8] |
Gutiérrez A S, Martínez J B C, Vandecasteele C. Energy and exergy assessments of a lime shaft kiln. Appl Therm Eng, 2013, 51(1-2): 273 doi: 10.1016/j.applthermaleng.2012.07.013
|
[9] |
王瑩瑩, 鐘小劍. 中國2004—2015年間石灰工業的CO2排放. 亞熱帶資源與環境學報, 2018, 13(2):7 doi: 10.3969/j.issn.1673-7105.2018.02.003
Wang Y Y, Zhong X J. CO2 emissions and influencing factors in China’s lime industry. J Subtrop Resour Environ, 2018, 13(2): 7 doi: 10.3969/j.issn.1673-7105.2018.02.003
|
[10] |
初建民, 高士林. 冶金石灰生產技術手冊. 北京: 冶金工業出版社, 2009
Chu J M, Gao S L. Manual of Metallurgical Lime Production Technology. Beijing: Metallurgical Industry Press, 2009
|
[11] |
Hallak B, Herz F, Specht E, et al. Simulation of limestone calcination in normal shaft kilns–Part 2: Influence of process parameters. ZKG Int, 2015, 68(10): 46
|
[12] |
Hallak B, Specht E, Herz F, et al. Influence of particle size distribution on the limestone decomposition in single shaft kilns. Energy Procedia, 2017, 120: 604 doi: 10.1016/j.egypro.2017.07.192
|
[13] |
Senega?nik A, Oman J, ?irok B. Annular shaft kiln for lime burning with kiln gas recirculation. Appl Therm Eng, 2008, 28(7): 785 doi: 10.1016/j.applthermaleng.2007.04.015
|
[14] |
周乃君, 易正明, 周萍, 等. 石灰爐爐內過程數值仿真. 中南工業大學學報(自然科學版), 2000, 31(5):422
Zhou N J, Yi Z M, Zhou P, et al. Numerical simulation of the processes in lime furnace. J Central South Univ Nat Sci, 2000, 31(5): 422
|
[15] |
Shagapov V S, Burkin M V, Voronin A V, et al. Calculation of limestone burning in a coke-fired kiln. Theor Found Chem Eng, 2004, 38(4): 440 doi: 10.1023/B:TFCE.0000036974.32157.89
|
[16] |
Bes A. Dynamic Process Simulation of Limestone Calcination in Normal Shaft Kilns [Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2006
|
[17] |
Marias F, Bruyères B. Modelling of a biomass fired furnace for production of lime. Chem Eng Sci, 2009, 64(15): 3417 doi: 10.1016/j.ces.2009.04.022
|
[18] |
Do D H, Specht E. Numerical simulation of heat and mass transfer of limestone decomposition in normal shaft kiln // Proceedings of ASME/JSME 2011 8th Thermal Engineering Joint Conference. Honolulu, 2011: T10060
|
[19] |
Gutiérrez A S, Vandecasteele C. Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production. Energy, 2011, 36(5): 2820 doi: 10.1016/j.energy.2011.02.023
|
[20] |
崔春, 陳永范, 王云波. 氣燒石灰豎窯內溫度場的數值模擬. 遼寧科技大學學報, 2014, 37(3):247 doi: 10.3969/j.issn.1674-1048.2014.03.006
Cui C, Chen Y F, Wang Y B. Numerical simulation of temperature field in gas burning shaft lime kiln. J Univ Sci Technol Liaoning, 2014, 37(3): 247 doi: 10.3969/j.issn.1674-1048.2014.03.006
|
[21] |
Do D H. Simulation of Lime Calcination in Normal Shaft a Parallel Flow Regenerative Kilns [Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2012
|
[22] |
El-Fakharany M K M. Process Simulation of Lime Calcination in Mixed Feed Shaft Kilns[Dissertation]. Magdeburg: Otto von Guericke University Magdeburg, 2012
|
[23] |
Senega?nik A, Oman J, ?irok B. Analysis of calcination parameters and the temperature profile in an annular shaft kiln. Part 1: Theoretical survey. Appl Therm Eng, 2007, 27(8-9): 1467 doi: 10.1016/j.applthermaleng.2006.10.001
|
[24] |
劉國輝, 崔國民, 謝斌, 等. 并流蓄熱式雙膛石灰窯煅燒過程數值模擬研究. 熱能動力工程, 2019, 34(6):100
Liu G H, Cui G M, Xie B, et al. Numerical simulation study on the calcination process of a dual-chamber lime kiln with parallel heat storage. J Eng Therm Energy Power, 2019, 34(6): 100
|
[25] |
Bluhm-Drenhaus T, Simsek E, Wirtz S, et al. A coupled fluid dynamic-discrete element simulation of heat and mass transfer in a lime shaft kiln. Chem Eng Sci, 2010, 65(9): 2821 doi: 10.1016/j.ces.2010.01.015
|
[26] |
Krause B, Liedmann B, Wiese J, et al. Coupled three dimensional DEM–CFD simulation of a lime shaft kiln—Calcination, particle movement and gas phase flow field. Chem Eng Sci, 2015, 134: 834 doi: 10.1016/j.ces.2015.06.002
|
[27] |
Krause B, Liedmann B, Wiese J, et al. 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln. Int J Therm Sci, 2017, 117: 121 doi: 10.1016/j.ijthermalsci.2017.03.017
|
[28] |
Iliuta I, Dam-Johansen K, Jensen L S. Mathematical modeling of an in-line low-NOx calciner. Chem Eng Sci, 2002, 57(5): 805 doi: 10.1016/S0009-2509(01)00420-1
|
[29] |
Chuan C, Specht E, Kehse G. Influences of the origin and material properties of limestone on its decomposition behaviour in shaft kilns. ZKG Int, 2007, 60(1): 51
|
[30] |
周筠清. 傳熱學. 北京: 冶金工業出版社, 1999
Zhou J Q. Heat Trasfer. Beijing: Metallurgical Industry Press, 1999
|