Citation: | JIN Long-zhe, ZHAO Jin-dan, WANG Hui, BAI Yang, YAN Kang. Characteristic modification of coal-based activated carbon and its methane adsorption capacity[J]. Chinese Journal of Engineering, 2022, 44(4): 526-533. doi: 10.13374/j.issn2095-9389.2021.03.18.002 |
[1] |
謝會芳, 劉延純, 馮寶民, 等. 甲烷存儲材料的研究進展. 大連大學學報, 2014, 35(3):43 doi: 10.3969/j.issn.1008-2395.2014.03.011
Xie H F, Liu Y C, Feng B M, et al. The progress in methane storage materials. J Dalian Univ, 2014, 35(3): 43 doi: 10.3969/j.issn.1008-2395.2014.03.011
|
[2] |
魏丁一, 杜翠鳳, 李彥鑫, 等. 電石渣-煤基固廢混合膠凝體系制硅酸鈣板的試驗. 工程科學學報, 2019, 41(1):53
Wei D Y, Du C F, Li Y X, et al. Experiment on preparation of calcium silicate board based on a mixed gel system of carbide slag and coal-based solid waste. Chin J Eng, 2019, 41(1): 53
|
[3] |
吳永紅, 張兵, 沈國良, 等. 煙煤基活性炭的制備及脫除甲基橙性能. 化工進展, 2013, 32(增刊1): 88
Wu Y H, Zhang B, Shen G L, et al. Production of bituminous coal-based activated carbon and the property on the removal of methyl orange. Chem Ind Eng Prog, 2013, 32(Suppl 1): 88
|
[4] |
徐精彩, 文虎, 張辛亥, 等. 綜放面巷道煤層自燃危險區域判定方法. 北京科技大學學報, 2003, 25(1):9 doi: 10.3321/j.issn:1001-053X.2003.01.003
Xu J C, Wen H, Zhang X H, et al. Determination of coal spontaneous combustion danger zones around roadway in the fully mechanized top-coal caving face. J Univ Sci Technol Beijing, 2003, 25(1): 9 doi: 10.3321/j.issn:1001-053X.2003.01.003
|
[5] |
張建良, 楊天鈞, 高征鎧, 等. 高爐噴煤過程煤粉分解熱確定的新方法. 北京科技大學學報, 2001, 23(4):308 doi: 10.3321/j.issn:1001-053X.2001.04.006
Zhang J L, Yang T J, Gao Z K, et al. A new method to determing the decomposition heat of coal during PCI for BF. J Univ Sci Technol Beijing, 2001, 23(4): 308 doi: 10.3321/j.issn:1001-053X.2001.04.006
|
[6] |
解煒. 我國煤基活性炭的應用現狀及發展趨勢. 煤炭科學技術, 2017, 45(10):16
Xie W. Application status and development trend of coal-based activated carbon in China. Coal Sci Technol, 2017, 45(10): 16
|
[7] |
趙婧昱, 張永利, 鄧軍, 等. 影響煤自燃氣體產物釋放的主要活性官能團. 工程科學學報, 2020, 42(9):1139
Zhao J Y, Zhang Y L, Deng J, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal. Chin J Eng, 2020, 42(9): 1139
|
[8] |
郇璇, 張小兵, 韋歡文. 基于不同類型煤吸附甲烷的吸附勢重要參數探討. 煤炭學報, 2015, 40(8):1859
Huan X, Zhang X B, Wei H W. Research on parameters of adsorption potential via methane adsorption of different types of coal. J China Coal Soc, 2015, 40(8): 1859
|
[9] |
Yoshizawa N, Yamada Y, Furuta T, et al. Coal-based activated carbons prepared with organometallics and their mesoporous structure. Energy Fuels, 1997, 11(2): 327 doi: 10.1021/ef9601475
|
[10] |
黃利華, 華堅. 活性炭表面性能對負載的鈰基催化劑脫硝性能和抗硫性能的影響. 功能材料, 2020, 51(12):12174 doi: 10.3969/j.issn.1001-9731.2020.12.026
Huang L H, Hua J. Effect of surface property of activated carbon on denitration and sulfur resistance performance of supported cerium based catalyst. J Funct Mater, 2020, 51(12): 12174 doi: 10.3969/j.issn.1001-9731.2020.12.026
|
[11] |
李揚, 李向陽, 魯子龍, 等. 改性煤基活性炭對燃煤煙氣中汞的脫除. 工程熱物理學報, 2020, 41(4):1035
Li Y, Li X Y, Lu Z L, et al. Removal of elemental mercury from flue gas by modified coal-based activated carbon. J Eng Thermophys, 2020, 41(4): 1035
|
[12] |
唐佳偉, 師學璐, 張春暉, 等. 硝酸改性煤基活性炭吸附處理垃圾滲濾液. 礦業科學學報, 2019, 4(3):269
Tang J W, Shi X L, Zhang C H, et al. Enhanced adsorption treatment of landfill leachate using coal-based activated carbon modified by nitric acid. J Min Sci Technol, 2019, 4(3): 269
|
[13] |
解強, 李蘭亭, 李靜, 等. 活性炭低溫氧/氮等離子體表面改性的研究. 中國礦業大學學報, 2005, 34(6):688 doi: 10.3321/j.issn:1000-1964.2005.06.002
Xie Q, Li L T, Li J, et al. Surface modification of activated carbon by low temperature oxygen/nitrogen plasma. J China Univ Min Technol, 2005, 34(6): 688 doi: 10.3321/j.issn:1000-1964.2005.06.002
|
[14] |
邱介山. 低溫等離子體技術在炭材料改性方面的應用. 新型炭材料, 2001, 16(3):58 doi: 10.3321/j.issn:1007-8827.2001.03.013
Qiu J S. Application of low temperature plasma in surface treatment of carbon materials. New Carbon Mater, 2001, 16(3): 58 doi: 10.3321/j.issn:1007-8827.2001.03.013
|
[15] |
解強, 張香蘭, 梁鼎成, 等. 煤基活性炭定向制備: 原理·方法·應用. 煤炭科學技術, 2021, 49(1):100
Xie Q, Zhang X L, Liang D C, et al. Directional preparation of coal-based activated carbon: Principles, approaches and applications. Coal Sci Technol, 2021, 49(1): 100
|
[16] |
Chen J P, Wu S. Acid/Base-treated activated carbons: Characterization of functional groups and metal adsorptive properties. Langmuir, 2004, 20(6): 2233 doi: 10.1021/la0348463
|
[17] |
黃正宏, 康飛宇, 吳慧, 等. 濕氧化改性多孔炭對低濃度苯和丁酮蒸汽的吸附. 清華大學學報(自然科學版), 2000, 40(10):111 doi: 10.3321/j.issn:1000-0054.2000.10.030
Huang Z H, Kang F Y, Wu H, et al. Adsorption of benzene and methyl ethyl ketone vapors at low concentration by wet oxidized porous carbons. J Tsinghua Univ (Sci Technol)
|
[18] |
張小兵, 郇璇, 張航, 等. 不同煤體結構煤基活性炭微觀結構與甲烷吸附性能. 中國礦業大學學報, 2017, 46(1):155
Zhang X B, Huan X, Zhang H, et al. Microstructure and methane adsorption of coal-based activated carbons with different coal body structures. J China Univ Min Technol, 2017, 46(1): 155
|
[19] |
孔佳, 林柏泉, 朱傳杰, 等. 改性煤基活性炭表面形貌及孔隙結構特性. 煤炭技術, 2016, 35(8):191
Kong J, Lin B Q, Zhu C J, et al. Research on surface and pore structure properties of modified coal activated carbon. Coal Technol, 2016, 35(8): 191
|
[20] |
單曉梅, 張文輝, 杜銘華, 等. 濕氧化和熱處理對煤基活性炭吸附SO2的影響. 煤炭學報, 2004, 29(2):208 doi: 10.3321/j.issn:0253-9993.2004.02.019
Shan X M, Zhang W H, Du M H, et al. Effect of wet oxidation and heat-treatment on the SO2 adsorption capacity for coal-based activated carbon. J China Coal Soc, 2004, 29(2): 208 doi: 10.3321/j.issn:0253-9993.2004.02.019
|
[21] |
Contreras M, Lagos G, Escalona N, et al. On the methane adsorption capacity of activated carbons: In search of a correlation with adsorbent properties. J Chem Technol Biotechnol, 2009, 84(11): 1736 doi: 10.1002/jctb.2239
|
[22] |
張亞潮, 付航航, 王福軍, 等. 基于煤基活性炭孔隙結構的礦井低濃度瓦斯吸附分離影響研究. 煤礦安全, 2020, 51(12):23
Zhang Y C, Fu H H, Wang F J, et al. Influence of pore structure of coal-based activated carbon on separation of low-concentration gas. Saf Coal Mines, 2020, 51(12): 23
|
[23] |
馮艷艷, 黃利宏, 儲偉. 表面改性對煤基活性炭及其甲烷吸附性能的影響. 煤炭學報, 2011, 36(12):2080
Feng Y Y, Huang L H, Chu W. Surface modification of coal-based activated carbon and its effects on methane adsorption. J China Coal Soc, 2011, 36(12): 2080
|
[24] |
馬東民, 李來新, 李小平, 等. 大佛寺井田4號煤CH4與CO2吸附解吸實驗比較. 煤炭學報, 2014, 39(9):1938
Ma D M, Li L X, Li X P, et al. Contrastive experiment of adsorption-desorption between CH4 and CO2 in Coal Seam 4 of Dafosi Coal Mine. J China Coal Soc, 2014, 39(9): 1938
|
[25] |
李曉文, 馬旭, 朱鵬飛, 等. 煤體理化結構特征及其對瓦斯吸附熱力學的影響. 煤礦安全, 2021, 52(3):1
Li X W, Ma X, Zhu P F, et al. Characteristics of coal physicochemical structure and its effect on thermodynamic of gas adsorption. Saf Coal Mines, 2021, 52(3): 1
|
[26] |
張增強, 張一平. 幾個吸附等溫模型熱力學參數的計算方法. 西北農業大學學報, 1998, 26(2):99
Zhang Z Q, Zhang Y P. Method of calculating the thermodynamic parametres from some isothermal absorption models. J Northwest Agric Univ, 1998, 26(2): 99
|
[27] |
郇璇. 煤改制活性炭及表面改性對甲烷吸附的影響[學位論文]. 焦作: 河南理工大學, 2015
Huan X. Activated Carbon was Prepared by Coal and the Effect of Surface Modification on Methane Adsorption [Dissertation]. Jiaozuo: Henan Polytechnic University, 2015
|