<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 6
May  2022
Turn off MathJax
Article Contents
ZHANG Han, ZHU Zhi-ming. Research and engineering application of continuous-drive friction welding[J]. Chinese Journal of Engineering, 2022, 44(6): 1002-1013. doi: 10.13374/j.issn2095-9389.2021.03.13.001
Citation: ZHANG Han, ZHU Zhi-ming. Research and engineering application of continuous-drive friction welding[J]. Chinese Journal of Engineering, 2022, 44(6): 1002-1013. doi: 10.13374/j.issn2095-9389.2021.03.13.001

Research and engineering application of continuous-drive friction welding

doi: 10.13374/j.issn2095-9389.2021.03.13.001
More Information
  • Corresponding author: E-mail: zzmdme@tsinghua.edu.cn
  • Received Date: 2021-03-13
    Available Online: 2021-07-06
  • Publish Date: 2022-06-25
  • The friction welding (FW) technology is a kind of solid-phase hot pressing welding method applied to the connection of similar or dissimilar materials. During the FW process, welding heat is generated by the pressure and high-speed relative motion between the joint interfaces of the workpieces. After the joint interfaces and their neighborhood arrive at the thermoplastic state, the workpieces are pressed into a whole by upsetting. FW has a wide range of weldability (e.g., carbon steel, alloy steel, non-ferrous metals, other materials of the same kind, dissimilar metal materials, and metal and non-metal materials with completely different properties) and can obtain welded joints with excellent properties (closed to base metal) and fewer defects (e.g., cracks, pores, and segregation); thus, it has high reliability to welded joints. As its advantages, FW exhibits low energy consumption (i.e., 10%–20% of fusion welding), high efficiency (i.e., only a few seconds to realize an effective joining of the workpieces), and environmental friendliness (i.e., no welding rod, wire, flux, or protective gas and no arc, spatter, smoke, or slag as in fusion welding) and can easily realize automation and large-scale production. FW is widely used in high-tech manufacturing in various industries, including in the automobile, aviation, aerospace, nuclear energy, oil drilling, marine development, and electric power industries. On the basis of the classification and the brief description of FW, the present situation of the research, development, and application of the continuous-drive FW (CDFW) technology was comprehensively sorted out and analyzed in-depth in this paper. This study involved the CDFW process characteristics and main process parameters, process exploration, influence of the process parameters on welded joint properties, numerical analysis, simulations, process parameter optimization, CDFW process innovation for dissimilar metals and non-metallic materials, practical engineering applications, and welding equipment, among others. The aspects of the potential applications of the FW technology, core scientific issues, research and development of the novel FW equipment, numerical analysis and simulation, and combination with emerging technologies associated with the CDFW technology were also reviewed and discussed.

     

  • loading
  • [1]
    齊少安, 劉承東. 摩擦焊接及其工藝發展. 機械制造, 2003, 41(11):24 doi: 10.3969/j.issn.1000-4998.2003.11.008

    Qi S A, Liu C D. Friction welding and its technical development. Machinery, 2003, 41(11): 24 doi: 10.3969/j.issn.1000-4998.2003.11.008
    [2]
    Li W Y, Vairis A, Preuss M, et al. Linear and rotary friction welding review. Int Mater Rev, 2016, 61(2): 71 doi: 10.1080/09506608.2015.1109214
    [3]
    Akinlabi E T, Mahamood R M. Solid-state Welding: Friction and Friction Stir Welding Processes. Switzerland: Springer International Publishing, 2020
    [4]
    梁海, 張崢. 慣性摩擦焊在航空發動機上的應用. 材料工程, 1992, 20(2):48

    Liang H, Zhang Z. Application of inertial friction welding on aeroengine. J Mater Eng, 1992, 20(2): 48
    [5]
    Nicholas E D. Friction processing technologies. Weld World, 2003, 47(11-12): 2 doi: 10.1007/BF03266402
    [6]
    陳忠海. 摩擦焊接技術及其工程應用. 電焊機, 2011, 41(8):101 doi: 10.3969/j.issn.1001-2303.2011.08.020

    Chen Z H. Analysis of friction processing technology and its engineering applications. Electr Weld Mach, 2011, 41(8): 101 doi: 10.3969/j.issn.1001-2303.2011.08.020
    [7]
    王宇, 熊柏青, 李志輝, 等. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能. 工程科學學報, 2020, 42(5):612

    Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc) alloys. Chin J Eng, 2020, 42(5): 612
    [8]
    趙鑫哲, 杜隨更, 侯東祥. 連續驅動摩擦焊機的研究現狀和展望. 新技術新工藝, 2014(2):1 doi: 10.3969/j.issn.1003-5311.2014.02.001

    Zhao X Z, Du S G, Hou D X. Status and perspectives of continues drive friction welding machine. New Technol New Process, 2014(2): 1 doi: 10.3969/j.issn.1003-5311.2014.02.001
    [9]
    高建忠, 徐斌, 許曉鋒, 等. 摩擦焊技術在石油管材連接中的應用展望. 石油管材與儀器, 2019, 5(6):1

    Gao J Z, Xu B, Xu X F, et al. Applications of friction welding in jointing of petroleum tubular goods. Petroleum Tubul Goods Instrum, 2019, 5(6): 1
    [10]
    王忠平, 鐘燕, 張立軍, 等. TiAl金屬間化合物與NiCr20TiAl摩擦焊接性分析. 電焊機, 2004, 34(9):35 doi: 10.3969/j.issn.1001-2303.2004.09.012

    Wang Z P, Zhong Y, Zhang L J, et al. Friction weldability of TiAl to NiCr20TiAl. Electr Weld Mach, 2004, 34(9): 35 doi: 10.3969/j.issn.1001-2303.2004.09.012
    [11]
    金峰, 熊江濤, 石俊秒, 等. GH4169旋轉摩擦焊飛邊成形機理研究. 材料導報, 2020, 34(10):10144 doi: 10.11896/cldb.20030095

    Jin F, Xiong J T, Shi J M, et al. Flash formation mechanism during rotary friction welding of GH4169 superalloy. Mater Rep, 2020, 34(10): 10144 doi: 10.11896/cldb.20030095
    [12]
    Li X, Li J L, Jin F, et al. Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World, 2018, 62(5): 923 doi: 10.1007/s40194-018-0601-y
    [13]
    Liang Z D, Qin G L, Geng P H, et al. Continuous drive friction welding of 5A33 Al alloy to AZ31B Mg alloy. J Manuf Process, 2017, 25: 153 doi: 10.1016/j.jmapro.2016.11.004
    [14]
    Liang Z D, Qin G L, Wang L Y, et al. Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy. Mater Sci Eng A, 2015, 645: 170 doi: 10.1016/j.msea.2015.07.089
    [15]
    劉穎. 相位摩擦焊的液壓伺服系統設計[學位論文]. 哈爾濱: 哈爾濱工程大學, 2013

    Liu Y. Design of Hydraulic Servo Control System for Phase Friction Welding [Dissertation]. Harbin: Harbin Engineering University, 2013
    [16]
    涂昊昀. 連續驅動摩擦焊機控制系統的研究與開發[學位論文]. 西安: 西北工業大學, 2007

    Tu H Y. Research and Development of Control System of Continuous Driven Friction Welding Machine [Dissertation]. Xi'an: Northwestern Polytechnical University, 2007
    [17]
    杜隨更. 摩擦焊接工藝新發展(一). 焊接技術, 2000, 29(3):49 doi: 10.3969/j.issn.1002-025X.2000.03.028

    Du S G. New development in friction welding technology: Part I. Weld Technol, 2000, 29(3): 49 doi: 10.3969/j.issn.1002-025X.2000.03.028
    [18]
    杜隨更. 摩擦焊接工藝新發展(二). 焊接技術, 2000, 29(6):48 doi: 10.3969/j.issn.1002-025X.2000.06.025

    Du S G. New development in friction welding technology: Part II. Weld Technol, 2000, 29(6): 48 doi: 10.3969/j.issn.1002-025X.2000.06.025
    [19]
    Bhamji I, Preuss M, Threadgill P L, et al. Linear friction welding of AISI 316L stainless steel. Mater Sci Eng A, 2010, 528(2): 680 doi: 10.1016/j.msea.2010.09.043
    [20]
    Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships. Metall Mater Trans A, 2005, 36(8): 2149 doi: 10.1007/s11661-005-0335-5
    [21]
    Weiss R, Sassani F. Strength of friction welded ceramic-metal joints. Mater Sci Technol, 1998, 14(6): 554 doi: 10.1179/mst.1998.14.6.554
    [22]
    傅莉, 杜隨更, 介萬奇. 異種金屬摩擦焊后電場熱處理組織與擴散行為. 金屬熱處理學報, 2003, 24(1):73 doi: 10.3969/j.issn.1009-6264.2003.01.017

    Fu L, Du S G, Jie W Q. Effect of external electric field on microstructure and diffusion behavior of friction welding joint of dissimlar materials during post weld annealing treatment. Trans Met Heat Treat, 2003, 24(1): 73 doi: 10.3969/j.issn.1009-6264.2003.01.017
    [23]
    Li W Y, Wang F F. Modeling of continuous drive friction welding of mild steel. Mater Sci Eng A, 2011, 528(18): 5921 doi: 10.1016/j.msea.2011.04.001
    [24]
    Cheniti B, Miroud D, Badji R, et al. Microstructure and mechanical behavior of dissimilar AISI 304L/WC-Co cermet rotary friction welds. Mater Sci Eng A, 2019, 758: 36 doi: 10.1016/j.msea.2019.04.081
    [25]
    Khidhir G I, Baban S A. Efficiency of dissimilar friction welded 1045 medium carbon steel and 316L austenitic stainless steel joints. J Mater Res Technol, 2019, 8(2): 1926 doi: 10.1016/j.jmrt.2019.01.010
    [26]
    Kimura M, Ishii H, Kusaka M, et al. Joining phenomena and joint strength of friction welded joint between pure aluminium and low carbon steel. Sci Technol Weld Join, 2009, 14(5): 388 doi: 10.1179/136217109X425856
    [27]
    Sakiyan S, Sabet H, Abbasi M. Characterization of mechanical properties in X45CrSi9-3/Nimonic 80A welded by friction welding. Int J Steel Struct, 2017, 17(1): 319 doi: 10.1007/s13296-016-0003-1
    [28]
    Liu Y, Zhao H Y, Peng Y, et al. Microstructure characterization and mechanical properties of the continuous-drive axial friction welded aluminum/stainless steel joint. Int J Adv Manuf Technol, 2019, 104(9-12): 4399 doi: 10.1007/s00170-019-04245-5
    [29]
    Reddy A C. Evaluation of parametric significance in friction welding process of AA1100 and Zr705 alloy using finite element analysis. Mater Today Proc, 2017, 4(2): 2624 doi: 10.1016/j.matpr.2017.02.136
    [30]
    Nan X J, Xiong J T, Jin F, et al. Modeling of rotary friction welding process based on maximum entropy production principle. J Manuf Process, 2019, 37: 21 doi: 10.1016/j.jmapro.2018.11.016
    [31]
    Sahin M. Optimizing the parameters for friction welding stainless steel to copper parts. Mater Tehnol, 2016, 50(1): 109 doi: 10.17222/mit.2015.023
    [32]
    Winiczenko R. Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. Int J Adv Manuf Technol, 2016, 84(5-8): 941
    [33]
    Sreenivasan K S, Kumar S S, Katiravan J. Genetic algorithm based optimization of friction welding process parameters on AA7075-SiC composite. Eng Sci Technol Int J, 2019, 22(4): 1136
    [34]
    Lin C B, Wu L C, Chou Y C. Effect of solvent and cosolvent on friction welding properties between part of PMMA with PVC. J Mater Sci, 2003, 38(12): 2563 doi: 10.1023/A:1024414030765
    [35]
    Cheepu M, Ashfaq M, Muthupandi V. A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel. Trans Indian Inst Met, 2017, 70(10): 2591 doi: 10.1007/s12666-017-1114-x
    [36]
    Wang G L, Li J L, Wang W L, et al. Rotary friction welding on dissimilar metals of aluminum and brass by using pre-heating method. Int J Adv Manuf Technol, 2018, 99(5-8): 1293 doi: 10.1007/s00170-018-2572-y
    [37]
    遲露鑫, 吳瑋. 熱處理對45鋼摩擦焊接頭組織性能的影響. 材料熱處理學報, 2015, 36(1):99

    Chi L X, Wu W. Effect of post-heat treatment on microstructure and mechanical properties of friction welding joint of 45 steel. Trans Mater Heat Treat, 2015, 36(1): 99
    [38]
    Kimura M, Kusaka M, Kaizu K, et al. Friction welding technique and joint properties of thin-walled pipe friction-welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel. Int J Adv Manuf Technol, 2016, 82(1-4): 489 doi: 10.1007/s00170-015-7384-8
    [39]
    Nasution A K, Ulum M F, Kadir M R A, et al. Mechanical and corrosion properties of partially degradable bone screws made of pure iron and stainless steel 316L by friction welding. Sci China Mater, 2018, 61(4): 593 doi: 10.1007/s40843-017-9057-3
    [40]
    路達. 全電機驅動摩擦焊機的結構設計及仿真[學位論文]. 哈爾濱: 東北林業大學, 2016

    Lu D. The Structure Design and the Simulation of all Motor Drive Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2016
    [41]
    劉幻. 摩擦焊機電液比例閉環控制系統的研究[學位論文]. 哈爾濱: 東北林業大學, 2009

    Liu H. Research on the Closed-Loop Electro Hydraulic Proportional Control System of Friction Welding Machine [Dissertation]. Harbin: Northeast Forestry University, 2009
    [42]
    李鵬. 旋轉摩擦焊熱源演變及接頭成形機制[學位論文]. 西安: 西北工業大學, 2015

    Li P. Heat Source Evolution and Joint Formation in Rotary Friction Welding Process [Dissertation]. Xi'an: Northwestern Polytechnical University, 2015
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(16)

    Article views (4002) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频